China Professional Aluminium Alloy Flexible Coupling Spring Coupling Encoder Coupling

Product Description

Aluminium alloy flexible coupling spring coupling encoder coupling

 

Specifications
1.The materials of Spider:German Bayer.
2.Hard Aluminum alloy

Your kind response of below questions will help us to recomemnd the most suitable model to you asap.
1.Areyou looking for Setscrew type or Clamp type?
2.what is coupling outer dimeter size?
3.what is coupling inner bore size and length?
4.what is coupling material(aluminium or Stainless steel )?

Dimensions:

Model Inner bore D
(mm)
L
(mm)
Nominal Torque
(N.m)
The Max of Torque
(N.m)
dmin dmax
JM2-25 4 12 25 34 5.0 10.0
JM2-30 6 16 30 35 7.4 14.8
JM2-40 10 24 40 66 9.5 19.0
JM2-55 12 28 55 78 34 68
JM2-65 14 38 65 90 95 190
JM2-80 24 45          80 114 135 270
JM2-95 30 55           95 126 230 460
JM2-105 35 60         105 140 380 760
Model Allowable speed
(rpm)
Radial Misalignment(m.m) Angular
Misalignment(°)
Axle
Misalignment(mm)
JM2-25 17000 0.02 1.0 +0.60
JM2-30 12000 0.02 1.0 +0.60
JM2-40 10000 0.02 1.0 +0.80
JM2-55 8000 0.02 1.0 +0.80
JM2-65 6000 0.02 1.0 +0.80
JM2-80 4600 0.02 1.0 +1.00
JM2-95 3800 0.02 1.0 +1.00
JM2-105 3400 0.02 1.0

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

shaft coupling

Industry Standards and Guidelines for Selecting and Installing Encoder Couplings

While there are no specific industry standards exclusively focused on encoder couplings, various general standards and guidelines related to couplings and motion control systems can be applied. These standards ensure proper selection, installation, and operation of encoder couplings:

1. ISO Standards: ISO (International Organization for Standardization) has developed standards related to couplings, such as ISO 14691 for flexible couplings and ISO 15364 for gear couplings. Although not specific to encoder couplings, these standards provide guidance on aspects like dimensions, tolerances, and testing methods.

2. Manufacturer Recommendations: Encoder coupling manufacturers often provide guidelines for selecting and installing their products. These guidelines include information on torque ratings, misalignment capabilities, and installation procedures specific to their coupling designs.

3. Motion Control Associations: Organizations such as the Motion Control & Motor Association (MCMA) provide resources and best practices for selecting and integrating motion control components, including encoder couplings. They offer insights into achieving optimal performance, accuracy, and reliability.

4. Machinery Safety Standards: Depending on the application, machinery safety standards such as ISO 13849 or ANSI B11.19 may need to be considered. These standards ensure the safe integration of motion control systems and related components.

5. OEM and System Requirements: The original equipment manufacturer (OEM) or specific system requirements for the machinery or automation setup should also be considered when selecting and installing encoder couplings. These requirements may include environmental conditions, space limitations, and performance expectations.

When selecting and installing encoder couplings, it’s essential to follow the guidelines provided by the coupling manufacturer and consider relevant industry standards. Additionally, consulting with experts in the field of motion control and automation can help ensure that the chosen encoder coupling meets the specific needs of the application and complies with safety and performance standards.

shaft coupling

Enhancing Accuracy and Reliability of Position and Velocity Measurements with Encoder Couplings

Yes, encoder couplings play a significant role in enhancing the accuracy and reliability of position and velocity measurements in various applications. Here’s how they contribute:

  • Direct Signal Transmission: Encoder couplings directly connect the encoder to the shaft, ensuring that the rotational position and velocity information is accurately transmitted without delays or signal degradation.
  • Minimized Signal Interference: Encoder couplings are designed to minimize electrical interference and noise, which could otherwise affect the accuracy of signal readings. This leads to more precise measurements of position and velocity.
  • Backlash Reduction: Encoder couplings with low backlash ensure that any reversals in direction are accurately captured, resulting in improved accuracy in both position and velocity measurements.
  • Elimination of Misalignment Errors: By compensating for angular misalignment between shafts, encoder couplings eliminate errors caused by misalignment, ensuring that the measured position and velocity data correspond accurately to the actual motion.
  • Consistent Signal Quality: Encoder couplings maintain a consistent signal quality even in dynamic conditions, such as rapid changes in direction or speed. This consistency leads to reliable and accurate measurements.
  • High Precision Applications: In applications requiring high precision, such as robotics, CNC machinery, or scientific instruments, encoder couplings ensure that even minor discrepancies in position and velocity are minimized.
  • Long-Term Stability: Encoder couplings provide stable and repeatable measurements over time, ensuring that the accuracy and reliability of position and velocity data are maintained throughout the equipment’s lifespan.

In conclusion, encoder couplings significantly enhance the accuracy and reliability of position and velocity measurements by directly transmitting signals, reducing interference, compensating for misalignment, and providing consistent signal quality.

shaft coupling

Facilitating Precise Signal Transmission with Encoder Couplings

An encoder coupling plays a crucial role in facilitating precise signal transmission between the encoder and the shaft in motion control and automation systems. Here’s how it works:

1. Minimizing Misalignment: Encoder couplings are designed to accommodate various types of misalignment, including angular, axial, and radial misalignment. By allowing controlled flexibility, the coupling minimizes the stress on both the encoder and the shaft, ensuring accurate signal transmission.

2. Reducing Backlash: Backlash is the amount of movement a system can experience before the motion is effectively transferred. High-quality encoder couplings have minimal backlash, ensuring that the encoder’s output accurately corresponds to the shaft’s movement.

3. Increasing Torque Transmission: Encoder couplings provide efficient torque transmission between the encoder and the shaft, allowing the encoder to accurately detect changes in position or speed.

4. Enhancing Response Time: The mechanical properties of the encoder coupling ensure that any changes in the shaft’s position or movement are promptly transmitted to the encoder. This results in a faster response time and more accurate signal feedback.

5. Reducing Signal Disturbances: Vibrations, shocks, and other disturbances in machinery can negatively impact signal accuracy. A well-designed encoder coupling dampens vibrations and disturbances, ensuring that the encoder receives a clean and accurate signal.

6. Compensating for Thermal Expansion: In some applications, temperature changes can cause the shaft and encoder to expand or contract at different rates. Encoder couplings accommodate these thermal variations, preventing signal discrepancies caused by thermal expansion.

Overall, the encoder coupling acts as a reliable intermediary between the encoder and the shaft, ensuring that the signal accurately reflects the shaft’s position, speed, and movement. This precise signal transmission is essential for the accurate control and performance of motion control and automation systems.

China Professional Aluminium Alloy Flexible Coupling Spring Coupling Encoder Coupling  China Professional Aluminium Alloy Flexible Coupling Spring Coupling Encoder Coupling
editor by CX 2024-03-14