Product Description
JMII Type Diaphragm Coupling(JB/T9147-1999)
JMII Elastic Diaphragm Coupling belong to JM series diaphragm couplings. They are made up of several groups of diaphragms (stainless steel thin wrench), and bolts are interlaced with 2 halves of couplings. Each diaphragm is made up of several sheets. The diaphragm is divided into connecting rod type and whole shape with different shapes. Its elastic deformation is used to compensate the relative displacement of the 2 axes, and it is a high performance flexible coupling of metal elastic elements. No lubrication, compact structure, high strength, long service life, no rotation clearance, no influence on temperature and oil pollution, it has the characteristics of acid resistance, alkali resistance and corrosion resistance.
JMII Type Diaphragm Coupling Main Dimension(JB/T9147-1999)
Type | Nominal torque Tn |
Peak torque Tmax |
Max Speed nmax |
Bore Diameter d,d1 |
Bore length | D | D1 | t | Torsional rigidity×106 | Mass | Rotary inertia |
||
J1 type | Y type |
L (recommend) |
|||||||||||
L | |||||||||||||
N·m | N·m | r·min-1 | mm | N·m/rad | kg | kg·m2 | |||||||
JMII1 | 40 | 63 | 10700 | 14 | 27 | 32 | 35 | 80 | 39 | 8±0.2 | 0.37 | 0.9 | 0.0005 |
16,18,19 | 30 | 42 | |||||||||||
20,22,24 | 38 | 52 | |||||||||||
25,28 | 44 | 62 | |||||||||||
JMII2 | 63 | 100 | 9300 | 20,22,24 | 38 | 52 | 40 | 92 | 53 | 0.45 | 1.4 | 0.0011 | |
25,28 | 44 | 62 | |||||||||||
30,32,35,38 | 60 | 82 | |||||||||||
JMII3 | 100 | 200 | 8400 | 25,28 | 44 | 62 | 45 | 102 | 63 | 0.56 | 2.1 | 0.002 | |
30,32,35,38 | 60 | 82 | |||||||||||
40,42,45 | 84 | 112 | |||||||||||
JMII4 | 250 | 400 | 6700 | 30,32,35,38 | 60 | 82 | 55 | 128 | 77 | 11±0.3 | 0.81 | 4.2 | 0.006 |
40,42,45,48,50,55 | 84 | 112 | |||||||||||
JMII5 | 500 | 800 | 5900 | 35,38 | 60 | 82 | 65 | 145 | 91 | 1.2 | 6.4 | 0.012 | |
40,42,45,48,50,55,56 | 84 | 112 | |||||||||||
60,63,65 | 107 | 142 | |||||||||||
JMII6 | 800 | 1250 | 5100 | 40,42,45,48,50,55,56 | 84 | 112 | 75 | 168 | 105 | 14±0.3 | 1.42 | 9.6 | 0.571 |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
JMII7 | 1000 | 2000 | 4750 | 45,48,50,55,56 | 84 | 112 | 80 | 180 | 112 | 15±0.4 | 1.9 | 12.5 | 0.0365 |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80 | 132 | 172 | |||||||||||
JMII8 | 1600 | 3150 | 4300 | 50,55,56 | 84 | 112 | 200 | 120 | 2.35 | 15.5 | 0.057 | ||
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80,85 | 132 | 172 | |||||||||||
JMII9 | 2500 | 4000 | 4200 | 55,56 | 84 | 112 | 205 | 120 | 20±0.4 | 2.7 | 16.5 | 0.065 | |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80,85 | 132 | 172 | |||||||||||
JMII10 | 3150 | 5000 | 4000 | 55,56 | 84 | 112 | 90 | 215 | 128 | 20±0.4 | 3.02 | 19.5 | 0.083 |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80,85,90 | 132 | 172 | |||||||||||
JMII11 | 4000 | 6300 | 3650 | 60,63,65,70,71,75 | 107 | 142 | 100 | 235 | 132 | 23±0.5 | 3.46 | 25 | 0.131 |
80,85,90,95 | 132 | 172 | |||||||||||
JMII12 | 5000 | 8000 | 3400 | 63,65,70,71,75 | 107 | 142 | 250 | 145 | 3.67 | 30 | 0.174 | ||
80,85,90,95 | 132 | 172 | |||||||||||
100 | 167 | 212 | |||||||||||
JMII13 | 6300 | 10000 | 3200 | 63,65,70,71,75 | 107 | 142 | 110 | 270 | 155 | 5.2 | 36 | 0.239 | |
80,85,90,95 | 132 | 172 | |||||||||||
100,110 | 167 | 212 | |||||||||||
JMII14 | 8000 | 12500 | 2850 | 65,70,71,75 | 107 | 142 | 115 | 300 | 162 | 27±0.6 | 7.8 | 45 | 0.38 |
80,85,90,95 | 132 | 172 | |||||||||||
100,110 | 167 | 212 | |||||||||||
JMII15 | 10000 | 16000 | 2700 | 70,71,75 | 107 | 142 | 125 | 320 | 176 | 8.43 | 55 | 0.5 | |
80,85,90,95 | 132 | 172 | |||||||||||
100,110,120,125 | 167 | 212 | |||||||||||
JMII16 | 12500 | 20000 | 2450 | 75 | 107 | 142 | 140 | 350 | 186 | 32±0.7 | 10.23 | 75 | 0.85 |
80,85,90,95 | 132 | 172 | |||||||||||
100,110,120,125 | 167 | 212 | |||||||||||
130 | 202 | 252 | |||||||||||
JMII17 | 16000 | 25000 | 2300 | 80,85,90,95 | 132 | 172 | 145 | 370 | 203 | 10.97 | 85 | 1.1 | |
100,110,120,125 | 167 | 212 | |||||||||||
130,140 | 202 | 252 | |||||||||||
JMII18 | 20000 | 31500 | 2150 | 90,95 | 132 | 172 | 165 | 400 | 230 | 13.07 | 115 | 1.65 | |
100,110,120,125 | 167 | 212 | |||||||||||
130,140,150 | 202 | 252 | |||||||||||
160 | 242 | 302 | |||||||||||
JMII19 | 25000 | 40000 | 1950 | 100,110,120,125 | 167 | 212 | 175 | 440 | 245 | 38±0.9 | 14.26 | 150 | 2.69 |
130,140,150 | 202 | 252 | |||||||||||
160,170 | 242 | 302 | |||||||||||
JMII20 | 31500 | 50000 | 1850 | 110,120,125 | 167 | 212 | 185 | 460 | 260 | 22.13 | 170 | 3.28 | |
130,140,150 | 202 | 252 | |||||||||||
160,170,180 | 242 | 302 | |||||||||||
JMII21 | 35500 | 56000 | 1800 | 120,125 | 167 | 212 | 200 | 480 | 280 | 38±0.9 | 23.7 | 200 | 4.28 |
130,140,150 | 202 | 252 | |||||||||||
160,170,180 | 242 | 302 | |||||||||||
190,200 | 282 | 352 | |||||||||||
JMII22 | 40000 | 63000 | 1700 | 130,140,150 | 202 | 252 | 210 | 500 | 295 | 24.6 | 230 | 5.18 | |
160,170,180 | 242 | 302 | |||||||||||
190,200 | 282 | 352 | |||||||||||
JMII23 | 50000 | 80000 | 1600 | 140,150 | 202 | 252 | 220 | 540 | 310 | 44±1 | 29.71 | 275 | 7.7 |
160,170,180 | 242 | 302 | |||||||||||
190,200,220 | 282 | 352 | |||||||||||
JMII24 | 63000 | 10000 | 1450 | 150 | 202 | 252 | 240 | 600 | 335 | 50±1.2 | 32.64 | 380 | 9.3 |
160,170,180 | 242 | 302 | |||||||||||
190,200,220 | 282 | 352 | |||||||||||
240 | 330 | 410 | |||||||||||
JMII25 | 80000 | 125000 | 1400 | 160,170,180 | 242 | 302 | 255 | 620 | 350 | 37.69 | 410 | 15.3 | |
190,200,220 | 282 | 352 | |||||||||||
240,250 | 330 | 410 | |||||||||||
JMII26 | 90000 | 140000 | 1300 | 160 | 242 | 302 | 275 | 660 | 385 | 50.43 | 510 | 20.9 | |
190,200,220 | 282 | 352 | |||||||||||
240,250,260 | 330 | 410 | |||||||||||
JMII27 | 112000 | 180000 | 1200 | 190,200,220 | 282 | 352 | 295 | 720 | 410 | 60±1.4 | 71.51 | 620 | 32.4 |
240,250,260 | 330 | 410 | |||||||||||
280 | 380 | 470 | |||||||||||
JMII28 | 140000 | 20000 | 1150 | 220 | 282 | 352 | 300 | 740 | 420 | 93.37 | 680 | 36 | |
240,250,260 | 330 | 410 | |||||||||||
280,300 | 380 | 470 | |||||||||||
JMII29 | 160000 | 224000 | 1100 | 240,250,260 | 330 | 410 | 320 | 770 | 450 | 114.53 | 780 | 43.9 | |
280,300,320 | 380 | 470 | |||||||||||
JMII30 | 180000 | 280000 | 1050 | 250,260 | 330 | 410 | 350 | 820 | 490 | 130.76 | 950 | 60.5 | |
280,300,320 | 380 | 470 | |||||||||||
340 | 450 | 550 |
Product Display
♦Other Products List
Transmission Machinery Parts Name |
Model |
Universal Coupling | WS,WSD,WSP |
Cardan Shaft | SWC,SWP,SWZ |
Tooth Coupling | CL,CLZ,GCLD,GIICL, GICL,NGCL,GGCL,GCLK |
Disc Coupling | JMI,JMIJ,JMII,JMIIJ |
High Flexible Coupling | LM |
Chain Coupling | GL |
Jaw Coupling | LT |
Grid Coupling | JS |
♦Our Company
HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective.
♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.
2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping
3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.
4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.
5. Quality Control
Every step should be a particular test by Professional Staff according to the standard of ISO9001 and TS16949.
♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.
Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all customers with customized PDF or AI format artworks.
Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.
Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.
Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.
Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.
Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.
Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
Q 9: What’s your payment?
A:1) T/T.
♦Contact Us
Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Industry Standards and Guidelines for Selecting and Installing Encoder Couplings
While there are no specific industry standards exclusively focused on encoder couplings, various general standards and guidelines related to couplings and motion control systems can be applied. These standards ensure proper selection, installation, and operation of encoder couplings:
1. ISO Standards: ISO (International Organization for Standardization) has developed standards related to couplings, such as ISO 14691 for flexible couplings and ISO 15364 for gear couplings. Although not specific to encoder couplings, these standards provide guidance on aspects like dimensions, tolerances, and testing methods.
2. Manufacturer Recommendations: Encoder coupling manufacturers often provide guidelines for selecting and installing their products. These guidelines include information on torque ratings, misalignment capabilities, and installation procedures specific to their coupling designs.
3. Motion Control Associations: Organizations such as the Motion Control & Motor Association (MCMA) provide resources and best practices for selecting and integrating motion control components, including encoder couplings. They offer insights into achieving optimal performance, accuracy, and reliability.
4. Machinery Safety Standards: Depending on the application, machinery safety standards such as ISO 13849 or ANSI B11.19 may need to be considered. These standards ensure the safe integration of motion control systems and related components.
5. OEM and System Requirements: The original equipment manufacturer (OEM) or specific system requirements for the machinery or automation setup should also be considered when selecting and installing encoder couplings. These requirements may include environmental conditions, space limitations, and performance expectations.
When selecting and installing encoder couplings, it’s essential to follow the guidelines provided by the coupling manufacturer and consider relevant industry standards. Additionally, consulting with experts in the field of motion control and automation can help ensure that the chosen encoder coupling meets the specific needs of the application and complies with safety and performance standards.
Best Practices for Minimizing Electrical Interference in Encoder Coupling Systems
Electrical interference can adversely affect the performance and accuracy of encoder coupling systems. To minimize such interference and ensure reliable signal transmission, consider the following best practices:
- Proper Grounding: Ensure that all components in the system are properly grounded to a common ground point. Grounding helps mitigate the buildup of static charges and reduces the risk of electrical noise affecting the encoder signal.
- Shielding: Use shielded cables for connecting the encoder to the controller. Shielding helps prevent external electromagnetic interference from reaching the signal wires and affecting the encoder output.
- Separation from Power Lines: Keep encoder cables and signal wires physically separated from high-voltage power lines, motors, and other sources of electromagnetic interference. This reduces the likelihood of induced noise affecting the encoder signal.
- Ferrite Beads: Employ ferrite beads or chokes on the signal cables near the encoder connection points. Ferrite beads suppress high-frequency noise and can be effective in minimizing electrical interference.
- Ground Loops: Avoid ground loops, which occur when there are multiple paths for current to flow between different ground points. Ground loops can introduce unwanted noise. Use single-point grounding and minimize ground loop formation.
- Isolation: Employ isolation techniques, such as optical isolation or transformer-based signal conditioning, to electrically isolate the encoder from the rest of the system. This prevents the propagation of noise between components.
- EMI Filters: Install electromagnetic interference (EMI) filters on the power supply lines to reduce conducted interference from reaching the encoder. These filters can help maintain clean power and reduce noise.
- Proper Cable Routing: Ensure that encoder cables are routed away from sources of interference and are kept as short as possible. Avoid sharp bends and kinks in the cables, which can lead to signal degradation.
- Grounding Practices: Follow proper grounding practices, such as using star grounding and minimizing ground connections. Avoid daisy-chaining ground connections, as this can increase the risk of interference.
Implementing these best practices will help minimize electrical interference and ensure that the encoder coupling system maintains accurate signal transmission, resulting in improved performance and reliability.
Types of Encoder Couplings Tailored for Specific Applications
Encoder couplings come in various types, each tailored to suit specific applications and requirements:
1. Beam Couplings: These couplings use flexible beams to transmit motion and accommodate misalignments. They are ideal for applications requiring high precision and low backlash.
2. Bellows Couplings: Bellows couplings have accordion-like bellows that provide high torsional stiffness while allowing axial and angular misalignment compensation. They are commonly used in vacuum environments.
3. Oldham Couplings: Oldham couplings use a three-piece design to transmit motion. They provide high misalignment capacity while maintaining accurate motion transmission.
4. Disc Couplings: Disc couplings consist of thin metal discs that provide torsional stiffness and minimal backlash. They are suitable for high-speed and high-torque applications.
5. Flexible Shaft Couplings: These couplings use a flexible element, such as elastomer or rubber, to accommodate misalignments and dampen vibrations. They are versatile and used in various industries.
6. Miniature Couplings: Designed for small-scale applications, miniature couplings provide precise motion control in compact spaces, such as robotics and medical devices.
7. High-Torque Couplings: These couplings are built to handle high torque loads, making them suitable for heavy-duty industrial applications.
8. Magnetic Couplings: Magnetic couplings use magnets to transmit motion without physical contact. They are used in applications requiring hermetic sealing or where avoiding direct contact is necessary.
9. Encoder-Integrated Couplings: Some couplings come with built-in encoders for direct position sensing. These are convenient for applications where space is limited or where separate encoders are not practical.
10. Shaft Locking Mechanisms: Some couplings feature mechanisms that lock the shafts in place, providing additional security against shaft slippage.
The choice of encoder coupling type depends on factors like the level of misalignment, torque requirements, speed, space limitations, and specific application needs.
editor by CX 2024-05-15
China Custom Aluminum Alloy Elastic Winding Encoder Coupler Flexible Shaft Spline Clamp Beam Couplings
Product Description
Product Name |
Aluminum Alloy Elastic Winding Encoder Coupler Flexible Shaft Spline Clamp Beam Couplings |
Material |
Aluminum alloy |
Surface treatment |
Natural color anode |
Customized service |
Support light customization and logo customization |
Remarks |
The default engraving brand name and size of the product. If you need not engraving, please contact the customer service for comments |
Packaging Details | Carton box with anti-static package,carton plus with wooden case. |
Main Products | Shaft Parts, Timing Belt Pulley, Gears, CNC Machining Parts, Sheet Metal Fabrication |
Certifications(2) | ISO9001:2015, IPMS |
Applicable Industries | Building Material Shops, Manufacturing Plant, Food & Beverage Factory, Farms |
Supply Ability | 100000 Piece/Pieces per Month |
Dimension | oem provided |
Surface finish | anodized |
Lead Time | 25 days |
Application | Furniture,cabinet |
Custom | OEM and ODM services are welcome,we can make cutom LOGO and products according to customer’s requests. |
Quality control Our | Finished product inspection,Warranty available |
service | Swiss machining;deburring;lathe/turning;5 axis;micromachining |
Color |
silver,gold,black,red,bulue,and according to the customer requests. |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Industry Standards and Guidelines for Selecting and Installing Encoder Couplings
While there are no specific industry standards exclusively focused on encoder couplings, various general standards and guidelines related to couplings and motion control systems can be applied. These standards ensure proper selection, installation, and operation of encoder couplings:
1. ISO Standards: ISO (International Organization for Standardization) has developed standards related to couplings, such as ISO 14691 for flexible couplings and ISO 15364 for gear couplings. Although not specific to encoder couplings, these standards provide guidance on aspects like dimensions, tolerances, and testing methods.
2. Manufacturer Recommendations: Encoder coupling manufacturers often provide guidelines for selecting and installing their products. These guidelines include information on torque ratings, misalignment capabilities, and installation procedures specific to their coupling designs.
3. Motion Control Associations: Organizations such as the Motion Control & Motor Association (MCMA) provide resources and best practices for selecting and integrating motion control components, including encoder couplings. They offer insights into achieving optimal performance, accuracy, and reliability.
4. Machinery Safety Standards: Depending on the application, machinery safety standards such as ISO 13849 or ANSI B11.19 may need to be considered. These standards ensure the safe integration of motion control systems and related components.
5. OEM and System Requirements: The original equipment manufacturer (OEM) or specific system requirements for the machinery or automation setup should also be considered when selecting and installing encoder couplings. These requirements may include environmental conditions, space limitations, and performance expectations.
When selecting and installing encoder couplings, it’s essential to follow the guidelines provided by the coupling manufacturer and consider relevant industry standards. Additionally, consulting with experts in the field of motion control and automation can help ensure that the chosen encoder coupling meets the specific needs of the application and complies with safety and performance standards.
Best Practices for Minimizing Electrical Interference in Encoder Coupling Systems
Electrical interference can adversely affect the performance and accuracy of encoder coupling systems. To minimize such interference and ensure reliable signal transmission, consider the following best practices:
- Proper Grounding: Ensure that all components in the system are properly grounded to a common ground point. Grounding helps mitigate the buildup of static charges and reduces the risk of electrical noise affecting the encoder signal.
- Shielding: Use shielded cables for connecting the encoder to the controller. Shielding helps prevent external electromagnetic interference from reaching the signal wires and affecting the encoder output.
- Separation from Power Lines: Keep encoder cables and signal wires physically separated from high-voltage power lines, motors, and other sources of electromagnetic interference. This reduces the likelihood of induced noise affecting the encoder signal.
- Ferrite Beads: Employ ferrite beads or chokes on the signal cables near the encoder connection points. Ferrite beads suppress high-frequency noise and can be effective in minimizing electrical interference.
- Ground Loops: Avoid ground loops, which occur when there are multiple paths for current to flow between different ground points. Ground loops can introduce unwanted noise. Use single-point grounding and minimize ground loop formation.
- Isolation: Employ isolation techniques, such as optical isolation or transformer-based signal conditioning, to electrically isolate the encoder from the rest of the system. This prevents the propagation of noise between components.
- EMI Filters: Install electromagnetic interference (EMI) filters on the power supply lines to reduce conducted interference from reaching the encoder. These filters can help maintain clean power and reduce noise.
- Proper Cable Routing: Ensure that encoder cables are routed away from sources of interference and are kept as short as possible. Avoid sharp bends and kinks in the cables, which can lead to signal degradation.
- Grounding Practices: Follow proper grounding practices, such as using star grounding and minimizing ground connections. Avoid daisy-chaining ground connections, as this can increase the risk of interference.
Implementing these best practices will help minimize electrical interference and ensure that the encoder coupling system maintains accurate signal transmission, resulting in improved performance and reliability.
Role of Encoder Couplings in Motion Control and Automation
An encoder coupling is a crucial component in motion control and automation systems, used to facilitate precise position and speed sensing:
It connects the shafts of a motor and an encoder, allowing the accurate transmission of rotational motion while maintaining precise alignment. The primary functions and usage of an encoder coupling include:
- Rotational Precision: Encoder couplings ensure that the rotational motion of the motor shaft is accurately transmitted to the encoder, preserving the exact position and speed information.
- Misalignment Compensation: They can accommodate slight misalignments between the motor and the encoder shafts, which can occur due to manufacturing tolerances or shaft deflection during operation.
- Torsional Stiffness: Encoder couplings maintain torsional stiffness to ensure minimal torsional deformation during motion, preventing signal inaccuracies and maintaining synchronization.
- Signal Integrity: Maintaining precise alignment helps preserve the integrity of the electrical signals generated by the encoder, ensuring accurate position and speed measurements.
- Reduced Wear: By minimizing misalignment and torsional stress, encoder couplings help reduce wear and extend the lifespan of both the motor and the encoder.
Overall, encoder couplings are essential for achieving accurate motion control and automation, enabling precise positioning and speed control in various applications such as robotics, CNC machines, conveyor systems, and more.
editor by CX 2024-05-13
China Custom Plum Flower Flexible Shaft Coupling Encoder CHINAMFG Rubber Spider Coupling Aluminum Transmission
Product Description
Excellent powder metallurgy parts metallic sintered parts
We could offer various powder metallurgy parts including iron based and copper based with top quality and cheapest price, please only send the drawing or sample to us, we will according to customer’s requirement to make it. if you are interested in our product, please do not hesitate to contact us, we would like to offer the top quality and best service for you. thank you!
How do We Work with Our Clients
1. For a design expert or a big company with your own engineering team: we prefer to receive a fully RFQ pack from you including drawing, 3D model, quantity, pictures;
2. For a start-up company owner or green hand for engineering: just send an idea that you want to try, you don’t even need to know what casting is;
3. Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;
4. Our engineering team will evaluate your inquiry and provide our offer within next 1~3 working days.
5. We can arrange a technical communication meeting with you and our engineers together anytime if required.
Place of origin: | Jangsu,China |
Type: | Powder metallurgy sintering |
Spare parts type: | Powder metallurgy parts |
Machinery Test report: | Provided |
Material: | Iron,stainless,steel,copper |
Key selling points: | Quality assurance |
Mould type: | Tungsten steel |
Material standard: | MPIF 35,DIN 3571,JIS Z 2550 |
Application: | Small home appliances,Lockset,Electric tool, automobile, |
Brand Name: | OEM SERVICE |
Plating: | Customized |
After-sales Service: | Online support |
Processing: | Powder Metallurgr,CNC Machining |
Powder Metallurgr: | High frequency quenching, oil immersion |
Quality Control: | 100% inspection |
The Advantage of Powder Metallurgy Process
1. Cost effective
The final products can be compacted with powder metallurgy method ,and no need or can shorten the processing of machine .It can save material greatly and reduce the production cost .
2. Complex shapes
Powder metallurgy allows to obtain complex shapes directly from the compacting tooling ,without any machining operation ,like teeth ,splines ,profiles ,frontal geometries etc.
3. High precision
Achievable tolerances in the perpendicular direction of compacting are typically IT 8-9 as sintered,improvable up to IT 5-7 after sizing .Additional machining operations can improve the precision .
4. Self-lubrication
The interconnected porosity of the material can be filled with oils ,obtaining then a self-lubricating bearing :the oil provides constant lubrication between bearing and shaft ,and the system does not need any additional external lubricant .
5. Green technology
The manufacturing process of sintered components is certified as ecological ,because the material waste is very low ,the product is recyclable ,and the energy efficiency is good because the material is not molten.
FAQ
Q1: What is the type of payment?
A: Usually you should prepay 50% of the total amount. The balance should be pay off before shipment.
Q2: How to guarantee the high quality?
A: 100% inspection. We have Carl Zeiss high-precision testing equipment and testing department to make sure every product of size,appearance and pressure test are good.
Q3: How long will you give me the reply?
A: we will contact you in 12 hours as soon as we can.
Q4. How about your delivery time?
A: Generally, it will take 25 to 35 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order. and if the item was non standard, we have to consider extra 10-15days for tooling/mould made.
Q5. Can you produce according to the samples or drawings?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.
Q6: How about tooling Charge?
A: Tooling charge only charge once when first order, all future orders would not charge again even tooling repair or under maintance.
Q7: What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
Q8: How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Industry Standards and Guidelines for Selecting and Installing Encoder Couplings
While there are no specific industry standards exclusively focused on encoder couplings, various general standards and guidelines related to couplings and motion control systems can be applied. These standards ensure proper selection, installation, and operation of encoder couplings:
1. ISO Standards: ISO (International Organization for Standardization) has developed standards related to couplings, such as ISO 14691 for flexible couplings and ISO 15364 for gear couplings. Although not specific to encoder couplings, these standards provide guidance on aspects like dimensions, tolerances, and testing methods.
2. Manufacturer Recommendations: Encoder coupling manufacturers often provide guidelines for selecting and installing their products. These guidelines include information on torque ratings, misalignment capabilities, and installation procedures specific to their coupling designs.
3. Motion Control Associations: Organizations such as the Motion Control & Motor Association (MCMA) provide resources and best practices for selecting and integrating motion control components, including encoder couplings. They offer insights into achieving optimal performance, accuracy, and reliability.
4. Machinery Safety Standards: Depending on the application, machinery safety standards such as ISO 13849 or ANSI B11.19 may need to be considered. These standards ensure the safe integration of motion control systems and related components.
5. OEM and System Requirements: The original equipment manufacturer (OEM) or specific system requirements for the machinery or automation setup should also be considered when selecting and installing encoder couplings. These requirements may include environmental conditions, space limitations, and performance expectations.
When selecting and installing encoder couplings, it’s essential to follow the guidelines provided by the coupling manufacturer and consider relevant industry standards. Additionally, consulting with experts in the field of motion control and automation can help ensure that the chosen encoder coupling meets the specific needs of the application and complies with safety and performance standards.
Enhancing Accuracy and Reliability of Position and Velocity Measurements with Encoder Couplings
Yes, encoder couplings play a significant role in enhancing the accuracy and reliability of position and velocity measurements in various applications. Here’s how they contribute:
- Direct Signal Transmission: Encoder couplings directly connect the encoder to the shaft, ensuring that the rotational position and velocity information is accurately transmitted without delays or signal degradation.
- Minimized Signal Interference: Encoder couplings are designed to minimize electrical interference and noise, which could otherwise affect the accuracy of signal readings. This leads to more precise measurements of position and velocity.
- Backlash Reduction: Encoder couplings with low backlash ensure that any reversals in direction are accurately captured, resulting in improved accuracy in both position and velocity measurements.
- Elimination of Misalignment Errors: By compensating for angular misalignment between shafts, encoder couplings eliminate errors caused by misalignment, ensuring that the measured position and velocity data correspond accurately to the actual motion.
- Consistent Signal Quality: Encoder couplings maintain a consistent signal quality even in dynamic conditions, such as rapid changes in direction or speed. This consistency leads to reliable and accurate measurements.
- High Precision Applications: In applications requiring high precision, such as robotics, CNC machinery, or scientific instruments, encoder couplings ensure that even minor discrepancies in position and velocity are minimized.
- Long-Term Stability: Encoder couplings provide stable and repeatable measurements over time, ensuring that the accuracy and reliability of position and velocity data are maintained throughout the equipment’s lifespan.
In conclusion, encoder couplings significantly enhance the accuracy and reliability of position and velocity measurements by directly transmitting signals, reducing interference, compensating for misalignment, and providing consistent signal quality.
Choosing an Encoder Coupling: Key Considerations
When selecting an encoder coupling for a particular motion control or automation setup, several factors should be carefully considered:
1. Type of Misalignment: Identify the types of misalignment your system may encounter, such as angular, axial, or radial misalignment. Choose an encoder coupling that can effectively compensate for the specific misalignment your application might experience.
2. Torque and Load: Calculate the maximum torque and load that the coupling will need to transmit. Ensure that the selected coupling is rated to handle these loads without compromising performance or accuracy.
3. Backlash: Evaluate the allowable backlash based on the precision required for your application. Choose a coupling with minimal backlash to ensure accurate signal transmission.
4. Response Time: For applications requiring rapid changes in position or speed, select an encoder coupling with a low torsional stiffness. This enhances the response time of the system and ensures timely signal transmission.
5. Environmental Conditions: Consider the operating environment, including factors like temperature, humidity, and exposure to contaminants. Choose a coupling material that can withstand the environmental conditions without degradation.
6. Shaft Size and Diameter: Ensure that the coupling is compatible with the shaft size and diameter of both the encoder and the driven component. Proper sizing prevents slippage and ensures efficient signal transmission.
7. Radial and Axial Runout: Evaluate the allowable radial and axial runout to prevent unnecessary stress on the coupling and encoder. Choosing a coupling that accommodates these factors contributes to a longer service life.
8. Space Limitations: If your setup has limited space, choose a compact and lightweight encoder coupling that can fit within the available dimensions without hindering other components.
9. Material Compatibility: Consider the compatibility of the coupling material with both the encoder and the driven component. This is particularly important if the coupling will be exposed to chemicals or other substances.
10. Installation and Maintenance: Select a coupling that is easy to install and maintain. This helps reduce downtime during installation and ensures the longevity of the coupling.
By carefully evaluating these factors, you can choose the most suitable encoder coupling for your specific motion control or automation application, ensuring optimal performance and accuracy.
editor by CX 2024-04-25
China manufacturer Aluminum Alloy Elastic Winding Encoder Coupler Flexible Shaft Spline Clamp Beam Couplings
Product Description
Product Name |
Aluminum Alloy Elastic Winding Encoder Coupler Flexible Shaft Spline Clamp Beam Couplings |
Material |
Aluminum alloy |
Surface treatment |
Natural color anode |
Customized service |
Support light customization and logo customization |
Remarks |
The default engraving brand name and size of the product. If you need not engraving, please contact the customer service for comments |
Packaging Details | Carton box with anti-static package,carton plus with wooden case. |
Main Products | Shaft Parts, Timing Belt Pulley, Gears, CNC Machining Parts, Sheet Metal Fabrication |
Certifications(2) | ISO9001:2015, IPMS |
Applicable Industries | Building Material Shops, Manufacturing Plant, Food & Beverage Factory, Farms |
Supply Ability | 100000 Piece/Pieces per Month |
Dimension | oem provided |
Surface finish | anodized |
Lead Time | 25 days |
Application | Furniture,cabinet |
Custom | OEM and ODM services are welcome,we can make cutom LOGO and products according to customer’s requests. |
Quality control Our | Finished product inspection,Warranty available |
service | Swiss machining;deburring;lathe/turning;5 axis;micromachining |
Color |
silver,gold,black,red,bulue,and according to the customer requests. |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Industry Standards and Guidelines for Selecting and Installing Encoder Couplings
While there are no specific industry standards exclusively focused on encoder couplings, various general standards and guidelines related to couplings and motion control systems can be applied. These standards ensure proper selection, installation, and operation of encoder couplings:
1. ISO Standards: ISO (International Organization for Standardization) has developed standards related to couplings, such as ISO 14691 for flexible couplings and ISO 15364 for gear couplings. Although not specific to encoder couplings, these standards provide guidance on aspects like dimensions, tolerances, and testing methods.
2. Manufacturer Recommendations: Encoder coupling manufacturers often provide guidelines for selecting and installing their products. These guidelines include information on torque ratings, misalignment capabilities, and installation procedures specific to their coupling designs.
3. Motion Control Associations: Organizations such as the Motion Control & Motor Association (MCMA) provide resources and best practices for selecting and integrating motion control components, including encoder couplings. They offer insights into achieving optimal performance, accuracy, and reliability.
4. Machinery Safety Standards: Depending on the application, machinery safety standards such as ISO 13849 or ANSI B11.19 may need to be considered. These standards ensure the safe integration of motion control systems and related components.
5. OEM and System Requirements: The original equipment manufacturer (OEM) or specific system requirements for the machinery or automation setup should also be considered when selecting and installing encoder couplings. These requirements may include environmental conditions, space limitations, and performance expectations.
When selecting and installing encoder couplings, it’s essential to follow the guidelines provided by the coupling manufacturer and consider relevant industry standards. Additionally, consulting with experts in the field of motion control and automation can help ensure that the chosen encoder coupling meets the specific needs of the application and complies with safety and performance standards.
Proper Installation and Maintenance of Encoder Couplings
Proper installation and maintenance are essential for ensuring the optimal performance and longevity of encoder couplings. Here’s a step-by-step guide:
1. Installation:
- Ensure Proper Alignment: Align the encoder coupling and shafts precisely to minimize misalignment, which can lead to signal loss and premature wear.
- Secure Fasteners: Tighten fasteners according to manufacturer specifications to prevent coupling slippage and maintain signal accuracy.
- Check Clearances: Ensure there’s enough clearance between the encoder coupling and surrounding components to prevent interference during operation.
- Use Proper Tools: Use appropriate tools and techniques during installation to avoid damaging the encoder coupling or other components.
2. Initial Testing:
- Perform System Check: After installation, conduct initial tests to verify proper signal transmission and alignment. Address any issues promptly.
- Check Signal Integrity: Use appropriate testing equipment to verify that the encoder signals are accurate and consistent.
3. Regular Maintenance:
- Visual Inspection: Regularly inspect the encoder coupling for signs of wear, damage, or misalignment. Look for cracks, corrosion, or other irregularities.
- Lubrication: If the encoder coupling requires lubrication, follow manufacturer guidelines to ensure proper lubricant application and prevent excessive wear.
- Cleanliness: Keep the encoder coupling and its surroundings clean to prevent debris and contaminants from affecting performance.
- Monitor Temperature: Monitor operating temperatures to ensure the encoder coupling remains within its recommended temperature range.
4. Preventive Measures:
- Regular Checkups: Schedule periodic maintenance and inspections to catch potential issues before they lead to significant problems.
- Alignment Checks: Regularly verify shaft alignment to maintain accurate signal transmission and prevent premature wear.
- Replace as Needed: If the encoder coupling shows signs of significant wear, damage, or signal degradation, consider replacing it to avoid system failures.
5. Follow Manufacturer Recommendations:
- Adhere to the manufacturer’s installation, maintenance, and lubrication guidelines to ensure optimal performance and maintain warranty coverage.
By following these installation and maintenance practices, you can ensure that your encoder coupling functions reliably and efficiently, contributing to the overall performance of your motion control or automation system.
Facilitating Precise Signal Transmission with Encoder Couplings
An encoder coupling plays a crucial role in facilitating precise signal transmission between the encoder and the shaft in motion control and automation systems. Here’s how it works:
1. Minimizing Misalignment: Encoder couplings are designed to accommodate various types of misalignment, including angular, axial, and radial misalignment. By allowing controlled flexibility, the coupling minimizes the stress on both the encoder and the shaft, ensuring accurate signal transmission.
2. Reducing Backlash: Backlash is the amount of movement a system can experience before the motion is effectively transferred. High-quality encoder couplings have minimal backlash, ensuring that the encoder’s output accurately corresponds to the shaft’s movement.
3. Increasing Torque Transmission: Encoder couplings provide efficient torque transmission between the encoder and the shaft, allowing the encoder to accurately detect changes in position or speed.
4. Enhancing Response Time: The mechanical properties of the encoder coupling ensure that any changes in the shaft’s position or movement are promptly transmitted to the encoder. This results in a faster response time and more accurate signal feedback.
5. Reducing Signal Disturbances: Vibrations, shocks, and other disturbances in machinery can negatively impact signal accuracy. A well-designed encoder coupling dampens vibrations and disturbances, ensuring that the encoder receives a clean and accurate signal.
6. Compensating for Thermal Expansion: In some applications, temperature changes can cause the shaft and encoder to expand or contract at different rates. Encoder couplings accommodate these thermal variations, preventing signal discrepancies caused by thermal expansion.
Overall, the encoder coupling acts as a reliable intermediary between the encoder and the shaft, ensuring that the signal accurately reflects the shaft’s position, speed, and movement. This precise signal transmission is essential for the accurate control and performance of motion control and automation systems.
editor by CX 2024-04-25
China manufacturer OEM Aluminum Stainless Steel Motor Jaw Encoder Shaft Coupling
Product Description
JMII Type Diaphragm Coupling(JB/T9147-1999)
JMII Elastic Diaphragm Coupling belong to JM series diaphragm couplings. They are made up of several groups of diaphragms (stainless steel thin wrench), and bolts are interlaced with 2 halves of couplings. Each diaphragm is made up of several sheets. The diaphragm is divided into connecting rod type and whole shape with different shapes. Its elastic deformation is used to compensate the relative displacement of the 2 axes, and it is a high performance flexible coupling of metal elastic elements. No lubrication, compact structure, high strength, long service life, no rotation clearance, no influence on temperature and oil pollution, it has the characteristics of acid resistance, alkali resistance and corrosion resistance.
JMII Type Diaphragm Coupling Main Dimension(JB/T9147-1999)
Type | Nominal torque Tn |
Peak torque Tmax |
Max Speed nmax |
Bore Diameter d,d1 |
Bore length | D | D1 | t | Torsional rigidity×106 | Mass | Rotary inertia |
||
J1 type | Y type |
L (recommend) |
|||||||||||
L | |||||||||||||
N·m | N·m | r·min-1 | mm | N·m/rad | kg | kg·m2 | |||||||
JMII1 | 40 | 63 | 10700 | 14 | 27 | 32 | 35 | 80 | 39 | 8±0.2 | 0.37 | 0.9 | 0.0005 |
16,18,19 | 30 | 42 | |||||||||||
20,22,24 | 38 | 52 | |||||||||||
25,28 | 44 | 62 | |||||||||||
JMII2 | 63 | 100 | 9300 | 20,22,24 | 38 | 52 | 40 | 92 | 53 | 0.45 | 1.4 | 0.0011 | |
25,28 | 44 | 62 | |||||||||||
30,32,35,38 | 60 | 82 | |||||||||||
JMII3 | 100 | 200 | 8400 | 25,28 | 44 | 62 | 45 | 102 | 63 | 0.56 | 2.1 | 0.002 | |
30,32,35,38 | 60 | 82 | |||||||||||
40,42,45 | 84 | 112 | |||||||||||
JMII4 | 250 | 400 | 6700 | 30,32,35,38 | 60 | 82 | 55 | 128 | 77 | 11±0.3 | 0.81 | 4.2 | 0.006 |
40,42,45,48,50,55 | 84 | 112 | |||||||||||
JMII5 | 500 | 800 | 5900 | 35,38 | 60 | 82 | 65 | 145 | 91 | 1.2 | 6.4 | 0.012 | |
40,42,45,48,50,55,56 | 84 | 112 | |||||||||||
60,63,65 | 107 | 142 | |||||||||||
JMII6 | 800 | 1250 | 5100 | 40,42,45,48,50,55,56 | 84 | 112 | 75 | 168 | 105 | 14±0.3 | 1.42 | 9.6 | 0.571 |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
JMII7 | 1000 | 2000 | 4750 | 45,48,50,55,56 | 84 | 112 | 80 | 180 | 112 | 15±0.4 | 1.9 | 12.5 | 0.0365 |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80 | 132 | 172 | |||||||||||
JMII8 | 1600 | 3150 | 4300 | 50,55,56 | 84 | 112 | 200 | 120 | 2.35 | 15.5 | 0.057 | ||
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80,85 | 132 | 172 | |||||||||||
JMII9 | 2500 | 4000 | 4200 | 55,56 | 84 | 112 | 205 | 120 | 20±0.4 | 2.7 | 16.5 | 0.065 | |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80,85 | 132 | 172 | |||||||||||
JMII10 | 3150 | 5000 | 4000 | 55,56 | 84 | 112 | 90 | 215 | 128 | 20±0.4 | 3.02 | 19.5 | 0.083 |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80,85,90 | 132 | 172 | |||||||||||
JMII11 | 4000 | 6300 | 3650 | 60,63,65,70,71,75 | 107 | 142 | 100 | 235 | 132 | 23±0.5 | 3.46 | 25 | 0.131 |
80,85,90,95 | 132 | 172 | |||||||||||
JMII12 | 5000 | 8000 | 3400 | 63,65,70,71,75 | 107 | 142 | 250 | 145 | 3.67 | 30 | 0.174 | ||
80,85,90,95 | 132 | 172 | |||||||||||
100 | 167 | 212 | |||||||||||
JMII13 | 6300 | 10000 | 3200 | 63,65,70,71,75 | 107 | 142 | 110 | 270 | 155 | 5.2 | 36 | 0.239 | |
80,85,90,95 | 132 | 172 | |||||||||||
100,110 | 167 | 212 | |||||||||||
JMII14 | 8000 | 12500 | 2850 | 65,70,71,75 | 107 | 142 | 115 | 300 | 162 | 27±0.6 | 7.8 | 45 | 0.38 |
80,85,90,95 | 132 | 172 | |||||||||||
100,110 | 167 | 212 | |||||||||||
JMII15 | 10000 | 16000 | 2700 | 70,71,75 | 107 | 142 | 125 | 320 | 176 | 8.43 | 55 | 0.5 | |
80,85,90,95 | 132 | 172 | |||||||||||
100,110,120,125 | 167 | 212 | |||||||||||
JMII16 | 12500 | 20000 | 2450 | 75 | 107 | 142 | 140 | 350 | 186 | 32±0.7 | 10.23 | 75 | 0.85 |
80,85,90,95 | 132 | 172 | |||||||||||
100,110,120,125 | 167 | 212 | |||||||||||
130 | 202 | 252 | |||||||||||
JMII17 | 16000 | 25000 | 2300 | 80,85,90,95 | 132 | 172 | 145 | 370 | 203 | 10.97 | 85 | 1.1 | |
100,110,120,125 | 167 | 212 | |||||||||||
130,140 | 202 | 252 | |||||||||||
JMII18 | 20000 | 31500 | 2150 | 90,95 | 132 | 172 | 165 | 400 | 230 | 13.07 | 115 | 1.65 | |
100,110,120,125 | 167 | 212 | |||||||||||
130,140,150 | 202 | 252 | |||||||||||
160 | 242 | 302 | |||||||||||
JMII19 | 25000 | 40000 | 1950 | 100,110,120,125 | 167 | 212 | 175 | 440 | 245 | 38±0.9 | 14.26 | 150 | 2.69 |
130,140,150 | 202 | 252 | |||||||||||
160,170 | 242 | 302 | |||||||||||
JMII20 | 31500 | 50000 | 1850 | 110,120,125 | 167 | 212 | 185 | 460 | 260 | 22.13 | 170 | 3.28 | |
130,140,150 | 202 | 252 | |||||||||||
160,170,180 | 242 | 302 | |||||||||||
JMII21 | 35500 | 56000 | 1800 | 120,125 | 167 | 212 | 200 | 480 | 280 | 38±0.9 | 23.7 | 200 | 4.28 |
130,140,150 | 202 | 252 | |||||||||||
160,170,180 | 242 | 302 | |||||||||||
190,200 | 282 | 352 | |||||||||||
JMII22 | 40000 | 63000 | 1700 | 130,140,150 | 202 | 252 | 210 | 500 | 295 | 24.6 | 230 | 5.18 | |
160,170,180 | 242 | 302 | |||||||||||
190,200 | 282 | 352 | |||||||||||
JMII23 | 50000 | 80000 | 1600 | 140,150 | 202 | 252 | 220 | 540 | 310 | 44±1 | 29.71 | 275 | 7.7 |
160,170,180 | 242 | 302 | |||||||||||
190,200,220 | 282 | 352 | |||||||||||
JMII24 | 63000 | 10000 | 1450 | 150 | 202 | 252 | 240 | 600 | 335 | 50±1.2 | 32.64 | 380 | 9.3 |
160,170,180 | 242 | 302 | |||||||||||
190,200,220 | 282 | 352 | |||||||||||
240 | 330 | 410 | |||||||||||
JMII25 | 80000 | 125000 | 1400 | 160,170,180 | 242 | 302 | 255 | 620 | 350 | 37.69 | 410 | 15.3 | |
190,200,220 | 282 | 352 | |||||||||||
240,250 | 330 | 410 | |||||||||||
JMII26 | 90000 | 140000 | 1300 | 160 | 242 | 302 | 275 | 660 | 385 | 50.43 | 510 | 20.9 | |
190,200,220 | 282 | 352 | |||||||||||
240,250,260 | 330 | 410 | |||||||||||
JMII27 | 112000 | 180000 | 1200 | 190,200,220 | 282 | 352 | 295 | 720 | 410 | 60±1.4 | 71.51 | 620 | 32.4 |
240,250,260 | 330 | 410 | |||||||||||
280 | 380 | 470 | |||||||||||
JMII28 | 140000 | 20000 | 1150 | 220 | 282 | 352 | 300 | 740 | 420 | 93.37 | 680 | 36 | |
240,250,260 | 330 | 410 | |||||||||||
280,300 | 380 | 470 | |||||||||||
JMII29 | 160000 | 224000 | 1100 | 240,250,260 | 330 | 410 | 320 | 770 | 450 | 114.53 | 780 | 43.9 | |
280,300,320 | 380 | 470 | |||||||||||
JMII30 | 180000 | 280000 | 1050 | 250,260 | 330 | 410 | 350 | 820 | 490 | 130.76 | 950 | 60.5 | |
280,300,320 | 380 | 470 | |||||||||||
340 | 450 | 550 |
Product Display
♦Other Products List
Transmission Machinery Parts Name |
Model |
Universal Coupling | WS,WSD,WSP |
Cardan Shaft | SWC,SWP,SWZ |
Tooth Coupling | CL,CLZ,GCLD,GIICL, GICL,NGCL,GGCL,GCLK |
Disc Coupling | JMI,JMIJ,JMII,JMIIJ |
High Flexible Coupling | LM |
Chain Coupling | GL |
Jaw Coupling | LT |
Grid Coupling | JS |
♦Our Company
HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective.
♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.
2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping
3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.
4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.
5. Quality Control
Every step should be a particular test by Professional Staff according to the standard of ISO9001 and TS16949.
♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.
Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all customers with customized PDF or AI format artworks.
Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.
Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.
Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.
Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.
Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.
Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
Q 9: What’s your payment?
A:1) T/T.
♦Contact Us
Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Crucial Industries and Applications for Encoder Couplings
Encoder couplings play a vital role in various industries and applications that require precise motion control and accurate signal transmission. Some examples include:
1. CNC Machining: In computer numerical control (CNC) machining, encoder couplings ensure accurate positioning of machine axes, resulting in precise and intricate machining of complex parts.
2. Robotics: Robotic systems rely on encoder couplings to enable precise movement control of robotic arms, ensuring accurate positioning and manipulation of objects in industries such as manufacturing and healthcare.
3. Semiconductor Manufacturing: In the semiconductor industry, encoder couplings are crucial for aligning and controlling the movement of wafer handling systems, which are essential for producing microchips and electronic components.
4. Printing and Packaging: In printing and packaging machinery, encoder couplings ensure precise control of printing heads, paper feeding, and packaging processes, resulting in high-quality and consistent output.
5. Medical Equipment: Encoder couplings are used in medical equipment such as imaging devices, robotic surgery systems, and diagnostic equipment to enable accurate and controlled movement for medical procedures.
6. Aerospace and Defense: In aerospace applications, encoder couplings are employed in aircraft control systems, radar systems, and satellite positioning systems, ensuring precise navigation and communication.
7. Automated Assembly Lines: Industries using automated assembly lines, such as automotive manufacturing, rely on encoder couplings to synchronize the movement of conveyor belts, robotic arms, and other components.
8. Laboratory Automation: In laboratory settings, encoder couplings contribute to the precise movement of instruments and devices for sample handling, analysis, and testing.
These examples illustrate the wide range of industries and applications where encoder couplings are crucial for achieving accurate motion control and maintaining signal integrity.
Suitability of Encoder Couplings for Harsh Environments and Extreme Temperatures
Encoder couplings can be designed and selected to withstand a wide range of environmental conditions, making them suitable for applications in harsh environments and extreme temperatures. Here’s how encoder couplings exhibit their suitability:
- Sealing and Encapsulation: Many encoder couplings are designed with effective sealing and encapsulation techniques that protect internal components from dust, moisture, and contaminants. This makes them suitable for outdoor or industrial environments where exposure to harsh elements is common.
- Material Selection: Encoder couplings can be manufactured using materials that offer high resistance to corrosion, chemicals, and other environmental factors. This ensures their longevity and performance in challenging conditions.
- Temperature Resistance: Some encoder couplings are specifically engineered to operate effectively across a wide temperature range, including extreme hot or cold environments. High-quality materials and precision manufacturing contribute to their temperature resistance.
- IP Ratings: Ingress Protection (IP) ratings indicate the level of protection an encoder coupling offers against solid particles and liquids. Encoders with higher IP ratings are better suited for harsh environments as they provide enhanced sealing and protection.
- Special Coatings: Certain encoder couplings can be coated with protective layers or finishes that provide additional resistance to harsh chemicals, oils, and other substances commonly encountered in industrial settings.
- Vibration and Shock Resistance: Encoder couplings can be designed to withstand vibrations and shocks that might occur in heavy machinery or equipment. This ensures consistent performance even in environments with mechanical stress.
- Customization: Manufacturers often offer customization options to tailor encoder couplings for specific environmental requirements. This includes features like extended shaft seals, special coatings, and additional protection measures.
Overall, encoder couplings can provide reliable signal transmission and precision in harsh environments or extreme temperatures when selected and installed appropriately.
Types of Encoder Couplings Tailored for Specific Applications
Encoder couplings come in various types, each tailored to suit specific applications and requirements:
1. Beam Couplings: These couplings use flexible beams to transmit motion and accommodate misalignments. They are ideal for applications requiring high precision and low backlash.
2. Bellows Couplings: Bellows couplings have accordion-like bellows that provide high torsional stiffness while allowing axial and angular misalignment compensation. They are commonly used in vacuum environments.
3. Oldham Couplings: Oldham couplings use a three-piece design to transmit motion. They provide high misalignment capacity while maintaining accurate motion transmission.
4. Disc Couplings: Disc couplings consist of thin metal discs that provide torsional stiffness and minimal backlash. They are suitable for high-speed and high-torque applications.
5. Flexible Shaft Couplings: These couplings use a flexible element, such as elastomer or rubber, to accommodate misalignments and dampen vibrations. They are versatile and used in various industries.
6. Miniature Couplings: Designed for small-scale applications, miniature couplings provide precise motion control in compact spaces, such as robotics and medical devices.
7. High-Torque Couplings: These couplings are built to handle high torque loads, making them suitable for heavy-duty industrial applications.
8. Magnetic Couplings: Magnetic couplings use magnets to transmit motion without physical contact. They are used in applications requiring hermetic sealing or where avoiding direct contact is necessary.
9. Encoder-Integrated Couplings: Some couplings come with built-in encoders for direct position sensing. These are convenient for applications where space is limited or where separate encoders are not practical.
10. Shaft Locking Mechanisms: Some couplings feature mechanisms that lock the shafts in place, providing additional security against shaft slippage.
The choice of encoder coupling type depends on factors like the level of misalignment, torque requirements, speed, space limitations, and specific application needs.
editor by CX 2024-04-23
China Hot selling OEM Aluminum Stainless Steel Motor Jaw Encoder Shaft Coupling
Product Description
JMII Type Diaphragm Coupling(JB/T9147-1999)
JMII Elastic Diaphragm Coupling belong to JM series diaphragm couplings. They are made up of several groups of diaphragms (stainless steel thin wrench), and bolts are interlaced with 2 halves of couplings. Each diaphragm is made up of several sheets. The diaphragm is divided into connecting rod type and whole shape with different shapes. Its elastic deformation is used to compensate the relative displacement of the 2 axes, and it is a high performance flexible coupling of metal elastic elements. No lubrication, compact structure, high strength, long service life, no rotation clearance, no influence on temperature and oil pollution, it has the characteristics of acid resistance, alkali resistance and corrosion resistance.
JMII Type Diaphragm Coupling Main Dimension(JB/T9147-1999)
Type | Nominal torque Tn |
Peak torque Tmax |
Max Speed nmax |
Bore Diameter d,d1 |
Bore length | D | D1 | t | Torsional rigidity×106 | Mass | Rotary inertia |
||
J1 type | Y type |
L (recommend) |
|||||||||||
L | |||||||||||||
N·m | N·m | r·min-1 | mm | N·m/rad | kg | kg·m2 | |||||||
JMII1 | 40 | 63 | 10700 | 14 | 27 | 32 | 35 | 80 | 39 | 8±0.2 | 0.37 | 0.9 | 0.0005 |
16,18,19 | 30 | 42 | |||||||||||
20,22,24 | 38 | 52 | |||||||||||
25,28 | 44 | 62 | |||||||||||
JMII2 | 63 | 100 | 9300 | 20,22,24 | 38 | 52 | 40 | 92 | 53 | 0.45 | 1.4 | 0.0011 | |
25,28 | 44 | 62 | |||||||||||
30,32,35,38 | 60 | 82 | |||||||||||
JMII3 | 100 | 200 | 8400 | 25,28 | 44 | 62 | 45 | 102 | 63 | 0.56 | 2.1 | 0.002 | |
30,32,35,38 | 60 | 82 | |||||||||||
40,42,45 | 84 | 112 | |||||||||||
JMII4 | 250 | 400 | 6700 | 30,32,35,38 | 60 | 82 | 55 | 128 | 77 | 11±0.3 | 0.81 | 4.2 | 0.006 |
40,42,45,48,50,55 | 84 | 112 | |||||||||||
JMII5 | 500 | 800 | 5900 | 35,38 | 60 | 82 | 65 | 145 | 91 | 1.2 | 6.4 | 0.012 | |
40,42,45,48,50,55,56 | 84 | 112 | |||||||||||
60,63,65 | 107 | 142 | |||||||||||
JMII6 | 800 | 1250 | 5100 | 40,42,45,48,50,55,56 | 84 | 112 | 75 | 168 | 105 | 14±0.3 | 1.42 | 9.6 | 0.571 |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
JMII7 | 1000 | 2000 | 4750 | 45,48,50,55,56 | 84 | 112 | 80 | 180 | 112 | 15±0.4 | 1.9 | 12.5 | 0.0365 |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80 | 132 | 172 | |||||||||||
JMII8 | 1600 | 3150 | 4300 | 50,55,56 | 84 | 112 | 200 | 120 | 2.35 | 15.5 | 0.057 | ||
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80,85 | 132 | 172 | |||||||||||
JMII9 | 2500 | 4000 | 4200 | 55,56 | 84 | 112 | 205 | 120 | 20±0.4 | 2.7 | 16.5 | 0.065 | |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80,85 | 132 | 172 | |||||||||||
JMII10 | 3150 | 5000 | 4000 | 55,56 | 84 | 112 | 90 | 215 | 128 | 20±0.4 | 3.02 | 19.5 | 0.083 |
60,63,65,70,71,75 | 107 | 142 | |||||||||||
80,85,90 | 132 | 172 | |||||||||||
JMII11 | 4000 | 6300 | 3650 | 60,63,65,70,71,75 | 107 | 142 | 100 | 235 | 132 | 23±0.5 | 3.46 | 25 | 0.131 |
80,85,90,95 | 132 | 172 | |||||||||||
JMII12 | 5000 | 8000 | 3400 | 63,65,70,71,75 | 107 | 142 | 250 | 145 | 3.67 | 30 | 0.174 | ||
80,85,90,95 | 132 | 172 | |||||||||||
100 | 167 | 212 | |||||||||||
JMII13 | 6300 | 10000 | 3200 | 63,65,70,71,75 | 107 | 142 | 110 | 270 | 155 | 5.2 | 36 | 0.239 | |
80,85,90,95 | 132 | 172 | |||||||||||
100,110 | 167 | 212 | |||||||||||
JMII14 | 8000 | 12500 | 2850 | 65,70,71,75 | 107 | 142 | 115 | 300 | 162 | 27±0.6 | 7.8 | 45 | 0.38 |
80,85,90,95 | 132 | 172 | |||||||||||
100,110 | 167 | 212 | |||||||||||
JMII15 | 10000 | 16000 | 2700 | 70,71,75 | 107 | 142 | 125 | 320 | 176 | 8.43 | 55 | 0.5 | |
80,85,90,95 | 132 | 172 | |||||||||||
100,110,120,125 | 167 | 212 | |||||||||||
JMII16 | 12500 | 20000 | 2450 | 75 | 107 | 142 | 140 | 350 | 186 | 32±0.7 | 10.23 | 75 | 0.85 |
80,85,90,95 | 132 | 172 | |||||||||||
100,110,120,125 | 167 | 212 | |||||||||||
130 | 202 | 252 | |||||||||||
JMII17 | 16000 | 25000 | 2300 | 80,85,90,95 | 132 | 172 | 145 | 370 | 203 | 10.97 | 85 | 1.1 | |
100,110,120,125 | 167 | 212 | |||||||||||
130,140 | 202 | 252 | |||||||||||
JMII18 | 20000 | 31500 | 2150 | 90,95 | 132 | 172 | 165 | 400 | 230 | 13.07 | 115 | 1.65 | |
100,110,120,125 | 167 | 212 | |||||||||||
130,140,150 | 202 | 252 | |||||||||||
160 | 242 | 302 | |||||||||||
JMII19 | 25000 | 40000 | 1950 | 100,110,120,125 | 167 | 212 | 175 | 440 | 245 | 38±0.9 | 14.26 | 150 | 2.69 |
130,140,150 | 202 | 252 | |||||||||||
160,170 | 242 | 302 | |||||||||||
JMII20 | 31500 | 50000 | 1850 | 110,120,125 | 167 | 212 | 185 | 460 | 260 | 22.13 | 170 | 3.28 | |
130,140,150 | 202 | 252 | |||||||||||
160,170,180 | 242 | 302 | |||||||||||
JMII21 | 35500 | 56000 | 1800 | 120,125 | 167 | 212 | 200 | 480 | 280 | 38±0.9 | 23.7 | 200 | 4.28 |
130,140,150 | 202 | 252 | |||||||||||
160,170,180 | 242 | 302 | |||||||||||
190,200 | 282 | 352 | |||||||||||
JMII22 | 40000 | 63000 | 1700 | 130,140,150 | 202 | 252 | 210 | 500 | 295 | 24.6 | 230 | 5.18 | |
160,170,180 | 242 | 302 | |||||||||||
190,200 | 282 | 352 | |||||||||||
JMII23 | 50000 | 80000 | 1600 | 140,150 | 202 | 252 | 220 | 540 | 310 | 44±1 | 29.71 | 275 | 7.7 |
160,170,180 | 242 | 302 | |||||||||||
190,200,220 | 282 | 352 | |||||||||||
JMII24 | 63000 | 10000 | 1450 | 150 | 202 | 252 | 240 | 600 | 335 | 50±1.2 | 32.64 | 380 | 9.3 |
160,170,180 | 242 | 302 | |||||||||||
190,200,220 | 282 | 352 | |||||||||||
240 | 330 | 410 | |||||||||||
JMII25 | 80000 | 125000 | 1400 | 160,170,180 | 242 | 302 | 255 | 620 | 350 | 37.69 | 410 | 15.3 | |
190,200,220 | 282 | 352 | |||||||||||
240,250 | 330 | 410 | |||||||||||
JMII26 | 90000 | 140000 | 1300 | 160 | 242 | 302 | 275 | 660 | 385 | 50.43 | 510 | 20.9 | |
190,200,220 | 282 | 352 | |||||||||||
240,250,260 | 330 | 410 | |||||||||||
JMII27 | 112000 | 180000 | 1200 | 190,200,220 | 282 | 352 | 295 | 720 | 410 | 60±1.4 | 71.51 | 620 | 32.4 |
240,250,260 | 330 | 410 | |||||||||||
280 | 380 | 470 | |||||||||||
JMII28 | 140000 | 20000 | 1150 | 220 | 282 | 352 | 300 | 740 | 420 | 93.37 | 680 | 36 | |
240,250,260 | 330 | 410 | |||||||||||
280,300 | 380 | 470 | |||||||||||
JMII29 | 160000 | 224000 | 1100 | 240,250,260 | 330 | 410 | 320 | 770 | 450 | 114.53 | 780 | 43.9 | |
280,300,320 | 380 | 470 | |||||||||||
JMII30 | 180000 | 280000 | 1050 | 250,260 | 330 | 410 | 350 | 820 | 490 | 130.76 | 950 | 60.5 | |
280,300,320 | 380 | 470 | |||||||||||
340 | 450 | 550 |
Product Display
♦Other Products List
Transmission Machinery Parts Name |
Model |
Universal Coupling | WS,WSD,WSP |
Cardan Shaft | SWC,SWP,SWZ |
Tooth Coupling | CL,CLZ,GCLD,GIICL, GICL,NGCL,GGCL,GCLK |
Disc Coupling | JMI,JMIJ,JMII,JMIIJ |
High Flexible Coupling | LM |
Chain Coupling | GL |
Jaw Coupling | LT |
Grid Coupling | JS |
♦Our Company
HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective.
♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.
2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping
3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.
4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.
5. Quality Control
Every step should be a particular test by Professional Staff according to the standard of ISO9001 and TS16949.
♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.
Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all customers with customized PDF or AI format artworks.
Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.
Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.
Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.
Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.
Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.
Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
Q 9: What’s your payment?
A:1) T/T.
♦Contact Us
Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Crucial Industries and Applications for Encoder Couplings
Encoder couplings play a vital role in various industries and applications that require precise motion control and accurate signal transmission. Some examples include:
1. CNC Machining: In computer numerical control (CNC) machining, encoder couplings ensure accurate positioning of machine axes, resulting in precise and intricate machining of complex parts.
2. Robotics: Robotic systems rely on encoder couplings to enable precise movement control of robotic arms, ensuring accurate positioning and manipulation of objects in industries such as manufacturing and healthcare.
3. Semiconductor Manufacturing: In the semiconductor industry, encoder couplings are crucial for aligning and controlling the movement of wafer handling systems, which are essential for producing microchips and electronic components.
4. Printing and Packaging: In printing and packaging machinery, encoder couplings ensure precise control of printing heads, paper feeding, and packaging processes, resulting in high-quality and consistent output.
5. Medical Equipment: Encoder couplings are used in medical equipment such as imaging devices, robotic surgery systems, and diagnostic equipment to enable accurate and controlled movement for medical procedures.
6. Aerospace and Defense: In aerospace applications, encoder couplings are employed in aircraft control systems, radar systems, and satellite positioning systems, ensuring precise navigation and communication.
7. Automated Assembly Lines: Industries using automated assembly lines, such as automotive manufacturing, rely on encoder couplings to synchronize the movement of conveyor belts, robotic arms, and other components.
8. Laboratory Automation: In laboratory settings, encoder couplings contribute to the precise movement of instruments and devices for sample handling, analysis, and testing.
These examples illustrate the wide range of industries and applications where encoder couplings are crucial for achieving accurate motion control and maintaining signal integrity.
Suitability of Encoder Couplings for Harsh Environments and Extreme Temperatures
Encoder couplings can be designed and selected to withstand a wide range of environmental conditions, making them suitable for applications in harsh environments and extreme temperatures. Here’s how encoder couplings exhibit their suitability:
- Sealing and Encapsulation: Many encoder couplings are designed with effective sealing and encapsulation techniques that protect internal components from dust, moisture, and contaminants. This makes them suitable for outdoor or industrial environments where exposure to harsh elements is common.
- Material Selection: Encoder couplings can be manufactured using materials that offer high resistance to corrosion, chemicals, and other environmental factors. This ensures their longevity and performance in challenging conditions.
- Temperature Resistance: Some encoder couplings are specifically engineered to operate effectively across a wide temperature range, including extreme hot or cold environments. High-quality materials and precision manufacturing contribute to their temperature resistance.
- IP Ratings: Ingress Protection (IP) ratings indicate the level of protection an encoder coupling offers against solid particles and liquids. Encoders with higher IP ratings are better suited for harsh environments as they provide enhanced sealing and protection.
- Special Coatings: Certain encoder couplings can be coated with protective layers or finishes that provide additional resistance to harsh chemicals, oils, and other substances commonly encountered in industrial settings.
- Vibration and Shock Resistance: Encoder couplings can be designed to withstand vibrations and shocks that might occur in heavy machinery or equipment. This ensures consistent performance even in environments with mechanical stress.
- Customization: Manufacturers often offer customization options to tailor encoder couplings for specific environmental requirements. This includes features like extended shaft seals, special coatings, and additional protection measures.
Overall, encoder couplings can provide reliable signal transmission and precision in harsh environments or extreme temperatures when selected and installed appropriately.
Challenges of Misalignment and How Encoder Couplings Address Them
Misalignment in mechanical systems occurs when the rotational axes of connected components are not perfectly aligned. This misalignment can lead to various issues, including reduced efficiency, increased wear, and even component failure. Encoder couplings play a crucial role in mitigating the challenges posed by misalignment. Here’s how they address these challenges:
1. Angular Misalignment: Encoder couplings can accommodate a certain degree of angular misalignment between the encoder and the driven component. They use flexible elements, such as elastomers or metal bellows, to allow for slight angular deviations without transmitting excessive stress to the connected components.
2. Radial Misalignment: Radial misalignment occurs when the axes of the encoder and the driven component are offset. Encoder couplings with flexible elements can absorb the radial displacement, preventing undue stress on the shafts and bearings. This helps extend the lifespan of the components and reduces the risk of premature failure.
3. Axial Misalignment: Axial misalignment refers to the axial offset between the encoder and the driven component. Encoder couplings with axial flexibility, such as certain types of beam or bellows couplings, can accommodate axial movement while maintaining effective signal transmission. This is particularly important in systems where thermal expansion or contraction may occur.
4. Vibration Damping: Misalignment can lead to vibrations that propagate through the system, affecting overall performance and accuracy. Encoder couplings with vibration-damping features help minimize the impact of these vibrations, ensuring smoother and more precise motion control.
5. Reduced Wear and Stress: Misalignment can increase wear and stress on shafts, bearings, and other components. Encoder couplings that effectively address misalignment help distribute loads more evenly, reducing wear and the likelihood of premature component failure.
6. Preserving Encoder Integrity: In systems with encoders, misalignment can compromise the accuracy of signal transmission, leading to measurement inaccuracies. Encoder couplings maintain the alignment necessary for accurate signal transmission, preserving the integrity of the encoder’s output.
Overall, encoder couplings provide the flexibility and compensation needed to accommodate misalignment while ensuring efficient and accurate signal transmission. By addressing misalignment challenges, these couplings contribute to the reliability, performance, and longevity of motion control and automation systems.
editor by CX 2024-04-17
China Good quality Encoders Engraving Aluminum Alloy CNC Stepper Motor Flexible Shaft Coupling
Product Description
Product Description
DO NOT worry about PRICE, we are manufacturer.
DO NOT worry about QUALITY, we have 16 years experience.
DO NOT worry about AFTER-SALES, we are 24 hours online.
Features :
1. The main body is made of high strength aluminum alloy
2. Zero backlash, suitable for forward and reverse rotation
3.Colloid is made of polyurethane, which has good wear resistance
4.Oil resistance and electrical insulation, the middle elasticbody can absorb vibration
5. Compensate radial, angular and axial deviations
6. Removable design for easy installation
7. Tightening method of positioning screw
Suitable for a wide range of devices
CNC lathes Optical inspection equipment
Module slider Servo motor
Company Profile
Certifications
Packaging & Shipping
All products will be well packed with standard export wooden case or
cartons.
Shafts packed with paper tube or plastic bag;
Linear guideways or lead screwswrapped with film or plastic bag;
Guarantee well protected against dampness,moisture, rust and shock.
Our Advantages
FAQ
Q1: Do you have a catalogue? Can you send me the catalogue to have a check of all your products?
A: Yes , We have product catalogue.Please contact us on line or send an Email to sending the catalogue.
Q2: I can’t find the product on your catalogue, can you make this product for me?
A: Our catalogue shows most of our products,but not all.So just let us know what product do you need.
Q3 : Can you make customized products and customized packing?
A: Yes.We made a lot of customized products for our customer before.And we have many moulds for our customers already.About customized packing,we can put your Logo or other info on the packing.There is no problem.Just have to point out that ,it will cause some additional cost.
Q4: Can you provide samples ? Are the samples free ?
A: Yes,we can provide samples.Normally,we provide 1-2pcs free samples for test or quality checking.But you have to pay for the shipping cos.If you need many items, or need more qty for each item,we will charge for the samples.
Any requirements or question,Welcome to “Send” us an e-mail Now!
It’s our great honor to do services for you! You also can get the FREE SAMPLES soon.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Industry Standards and Guidelines for Selecting and Installing Encoder Couplings
While there are no specific industry standards exclusively focused on encoder couplings, various general standards and guidelines related to couplings and motion control systems can be applied. These standards ensure proper selection, installation, and operation of encoder couplings:
1. ISO Standards: ISO (International Organization for Standardization) has developed standards related to couplings, such as ISO 14691 for flexible couplings and ISO 15364 for gear couplings. Although not specific to encoder couplings, these standards provide guidance on aspects like dimensions, tolerances, and testing methods.
2. Manufacturer Recommendations: Encoder coupling manufacturers often provide guidelines for selecting and installing their products. These guidelines include information on torque ratings, misalignment capabilities, and installation procedures specific to their coupling designs.
3. Motion Control Associations: Organizations such as the Motion Control & Motor Association (MCMA) provide resources and best practices for selecting and integrating motion control components, including encoder couplings. They offer insights into achieving optimal performance, accuracy, and reliability.
4. Machinery Safety Standards: Depending on the application, machinery safety standards such as ISO 13849 or ANSI B11.19 may need to be considered. These standards ensure the safe integration of motion control systems and related components.
5. OEM and System Requirements: The original equipment manufacturer (OEM) or specific system requirements for the machinery or automation setup should also be considered when selecting and installing encoder couplings. These requirements may include environmental conditions, space limitations, and performance expectations.
When selecting and installing encoder couplings, it’s essential to follow the guidelines provided by the coupling manufacturer and consider relevant industry standards. Additionally, consulting with experts in the field of motion control and automation can help ensure that the chosen encoder coupling meets the specific needs of the application and complies with safety and performance standards.
Impact of Encoder Resolution on Choice of Coupling
The encoder resolution plays a crucial role in selecting an appropriate coupling for your system. Encoder resolution refers to the number of distinct positions a rotary encoder can detect in one full rotation. Here’s how encoder resolution impacts the choice of coupling:
1. Precision Requirements:
Higher encoder resolutions provide finer position accuracy. If your application demands high precision and accuracy, such as in robotics or CNC machines, a coupling that minimizes backlash and offers precise torque transmission is essential.
2. Backlash Sensitivity:
As encoder resolution increases, the system becomes more sensitive to backlash (play between coupling components). To mitigate this, a coupling with minimal backlash, such as a zero-backlash or low-backlash coupling, is recommended to ensure accurate position feedback.
3. Dynamic Response:
Higher encoder resolutions allow systems to detect even small movements, improving dynamic response. For applications requiring rapid and accurate positioning changes, a coupling that provides high torsional stiffness and low wind-up is beneficial.
4. Mechanical Compliance:
Low-resolution encoders may tolerate some misalignment due to their coarser feedback intervals. However, high-resolution encoders are more sensitive to misalignment, making it important to choose a coupling that accommodates misalignment while maintaining signal accuracy.
5. Coupling Selection:
For high-resolution encoders, consider couplings that provide precision, low backlash, and accurate torque transmission, such as beam couplings, bellows couplings, or Oldham couplings. These couplings help maintain the integrity of position feedback and optimize system performance.
6. Environmental Factors:
The operating environment can affect the choice of coupling. For applications with extreme conditions, such as temperature fluctuations or aggressive chemicals, select a coupling material that can withstand these conditions without compromising the encoder’s accuracy.
Ultimately, the encoder resolution influences the coupling choice by demanding a coupling that complements the precision, accuracy, and dynamic performance required by the application.
Importance of Backlash Reduction in Encoder Couplings
Backlash reduction is a critical consideration when selecting encoder couplings, particularly in motion control and automation applications that require precision and accuracy. Backlash refers to the angular or linear movement that occurs when the direction of motion changes in a mechanical system.
In encoder couplings, backlash can lead to inaccuracies in signal transmission between the encoder and the driven component. This is especially problematic in applications that involve rapid changes in direction or require precise positioning. The importance of backlash reduction can be understood through the following points:
1. Precision: Backlash can introduce errors in the measurement or position control process. As the system changes direction, the backlash can cause a delay in the response of the encoder, leading to inaccurate position readings or control commands.
2. Repeatability: Systems that require consistent and repeatable motion rely on accurate signal transmission. Backlash can lead to inconsistencies in positioning, making it difficult to achieve the desired level of repeatability.
3. Minimized Error Accumulation: In applications that involve multiple movements and direction changes, backlash can accumulate and lead to a cumulative error over time. This can result in a significant deviation from the intended position or motion path.
4. Smooth Operation: Backlash can cause jerky or uneven motion transitions, affecting the overall smoothness of operation. In applications where smooth and continuous motion is crucial, backlash reduction becomes essential.
5. Feedback Loop Integrity: Many encoder systems rely on closed-loop feedback control to maintain accuracy. Backlash can disrupt the feedback loop, causing the system to overcompensate for the movement delay and leading to instability.
6. System Efficiency: Backlash can result in energy loss and mechanical stress as the system compensates for the delay in movement. This can reduce the overall efficiency of the system.
To address these challenges, encoder couplings are designed with features that minimize backlash. Coupling designs may incorporate mechanisms such as preloading, spring elements, or specialized materials that reduce the clearance between components, effectively reducing or eliminating backlash. By selecting encoder couplings with reduced backlash, motion control and automation systems can achieve higher levels of accuracy, repeatability, and overall performance.
editor by CX 2024-04-03
China Best Sales Plum Flower Flexible Shaft Coupling Encoder CHINAMFG Rubber Spider Coupling Aluminum Transmission
Product Description
Excellent powder metallurgy parts metallic sintered parts
We could offer various powder metallurgy parts including iron based and copper based with top quality and cheapest price, please only send the drawing or sample to us, we will according to customer’s requirement to make it. if you are interested in our product, please do not hesitate to contact us, we would like to offer the top quality and best service for you. thank you!
How do We Work with Our Clients
1. For a design expert or a big company with your own engineering team: we prefer to receive a fully RFQ pack from you including drawing, 3D model, quantity, pictures;
2. For a start-up company owner or green hand for engineering: just send an idea that you want to try, you don’t even need to know what casting is;
3. Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;
4. Our engineering team will evaluate your inquiry and provide our offer within next 1~3 working days.
5. We can arrange a technical communication meeting with you and our engineers together anytime if required.
Place of origin: | Jangsu,China |
Type: | Powder metallurgy sintering |
Spare parts type: | Powder metallurgy parts |
Machinery Test report: | Provided |
Material: | Iron,stainless,steel,copper |
Key selling points: | Quality assurance |
Mould type: | Tungsten steel |
Material standard: | MPIF 35,DIN 3571,JIS Z 2550 |
Application: | Small home appliances,Lockset,Electric tool, automobile, |
Brand Name: | OEM SERVICE |
Plating: | Customized |
After-sales Service: | Online support |
Processing: | Powder Metallurgr,CNC Machining |
Powder Metallurgr: | High frequency quenching, oil immersion |
Quality Control: | 100% inspection |
The Advantage of Powder Metallurgy Process
1. Cost effective
The final products can be compacted with powder metallurgy method ,and no need or can shorten the processing of machine .It can save material greatly and reduce the production cost .
2. Complex shapes
Powder metallurgy allows to obtain complex shapes directly from the compacting tooling ,without any machining operation ,like teeth ,splines ,profiles ,frontal geometries etc.
3. High precision
Achievable tolerances in the perpendicular direction of compacting are typically IT 8-9 as sintered,improvable up to IT 5-7 after sizing .Additional machining operations can improve the precision .
4. Self-lubrication
The interconnected porosity of the material can be filled with oils ,obtaining then a self-lubricating bearing :the oil provides constant lubrication between bearing and shaft ,and the system does not need any additional external lubricant .
5. Green technology
The manufacturing process of sintered components is certified as ecological ,because the material waste is very low ,the product is recyclable ,and the energy efficiency is good because the material is not molten.
FAQ
Q1: What is the type of payment?
A: Usually you should prepay 50% of the total amount. The balance should be pay off before shipment.
Q2: How to guarantee the high quality?
A: 100% inspection. We have Carl Zeiss high-precision testing equipment and testing department to make sure every product of size,appearance and pressure test are good.
Q3: How long will you give me the reply?
A: we will contact you in 12 hours as soon as we can.
Q4. How about your delivery time?
A: Generally, it will take 25 to 35 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order. and if the item was non standard, we have to consider extra 10-15days for tooling/mould made.
Q5. Can you produce according to the samples or drawings?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.
Q6: How about tooling Charge?
A: Tooling charge only charge once when first order, all future orders would not charge again even tooling repair or under maintance.
Q7: What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
Q8: How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
High-Speed Rotations and Signal Accuracy in Encoder Couplings
Encoder couplings are designed to handle high-speed rotations while maintaining accurate signal transmission between the encoder and the driven shaft. Several factors contribute to their ability to achieve this:
1. Precision Manufacturing: Encoder couplings are manufactured with high precision to ensure minimal runout and concentricity errors. This precision minimizes vibrations and ensures accurate signal transmission at high speeds.
2. Low Backlash: Many encoder couplings are designed to have minimal or zero backlash. Backlash refers to the play or movement between the coupling’s mating components. Low backlash reduces signal inaccuracies caused by sudden changes in direction or speed.
3. Balanced Design: Balanced design helps distribute forces and torques evenly across the coupling, reducing the likelihood of vibration-induced signal distortions during high-speed rotations.
4. Material Selection: The choice of materials with suitable mechanical properties plays a role in achieving high-speed performance. Materials with low density and high strength help minimize the coupling’s mass while maintaining structural integrity.
5. Vibration Damping: Some encoder couplings incorporate vibration-damping features, such as elastomeric inserts, to mitigate vibrations and oscillations generated during high-speed rotations.
6. Dynamic Balance: Encoder couplings may undergo dynamic balancing to ensure that any uneven mass distribution is corrected, further reducing vibrations at high speeds.
7. Bearing Support: Proper bearing support on both sides of the encoder coupling helps maintain alignment and reduces stress on the coupling and encoder shaft, enhancing signal accuracy.
Encoder couplings are engineered to offer high-speed capabilities while preserving signal accuracy, making them suitable for applications where precision motion control and signal integrity are critical.
Impact of Encoder Resolution on Choice of Coupling
The encoder resolution plays a crucial role in selecting an appropriate coupling for your system. Encoder resolution refers to the number of distinct positions a rotary encoder can detect in one full rotation. Here’s how encoder resolution impacts the choice of coupling:
1. Precision Requirements:
Higher encoder resolutions provide finer position accuracy. If your application demands high precision and accuracy, such as in robotics or CNC machines, a coupling that minimizes backlash and offers precise torque transmission is essential.
2. Backlash Sensitivity:
As encoder resolution increases, the system becomes more sensitive to backlash (play between coupling components). To mitigate this, a coupling with minimal backlash, such as a zero-backlash or low-backlash coupling, is recommended to ensure accurate position feedback.
3. Dynamic Response:
Higher encoder resolutions allow systems to detect even small movements, improving dynamic response. For applications requiring rapid and accurate positioning changes, a coupling that provides high torsional stiffness and low wind-up is beneficial.
4. Mechanical Compliance:
Low-resolution encoders may tolerate some misalignment due to their coarser feedback intervals. However, high-resolution encoders are more sensitive to misalignment, making it important to choose a coupling that accommodates misalignment while maintaining signal accuracy.
5. Coupling Selection:
For high-resolution encoders, consider couplings that provide precision, low backlash, and accurate torque transmission, such as beam couplings, bellows couplings, or Oldham couplings. These couplings help maintain the integrity of position feedback and optimize system performance.
6. Environmental Factors:
The operating environment can affect the choice of coupling. For applications with extreme conditions, such as temperature fluctuations or aggressive chemicals, select a coupling material that can withstand these conditions without compromising the encoder’s accuracy.
Ultimately, the encoder resolution influences the coupling choice by demanding a coupling that complements the precision, accuracy, and dynamic performance required by the application.
Key Functions and Benefits of Using an Encoder Coupling
An encoder coupling plays a vital role in motion control and automation systems, offering several functions and benefits:
1. Accurate Position and Speed Sensing: Encoder couplings ensure precise transmission of rotational motion between the motor and the encoder, allowing accurate measurement of position and speed.
2. Misalignment Compensation: They can accommodate angular, radial, and axial misalignments between the motor and encoder shafts, maintaining accurate motion even in imperfect alignment conditions.
3. Torsional Stiffness: Encoder couplings provide torsional rigidity to minimize torsional deflection, ensuring that the encoder’s output signals accurately reflect the actual motion of the motor.
4. Signal Integrity: By maintaining precise alignment, they prevent signal distortion or loss, leading to accurate position and speed feedback from the encoder.
5. Reduced Wear: Proper alignment reduces stress on shafts, bearings, and other components, prolonging the lifespan of both the motor and encoder.
6. Increased Efficiency: Encoder couplings help achieve smoother motion control, enhancing overall system efficiency and reducing the likelihood of jerky movements.
7. Enhanced Performance: With accurate position and speed feedback, encoder couplings contribute to improved system performance, consistency, and repeatability.
8. Flexible Design: They come in various designs and materials to suit different applications and requirements.
9. Compatibility: Encoder couplings are compatible with various motor and encoder types, making them versatile solutions for different setups.
10. Easy Installation: Most encoder couplings are designed for straightforward installation, reducing downtime during setup or maintenance.
Overall, encoder couplings are essential components that ensure precise motion control, accurate position sensing, and reliable automation in various industries and applications.
editor by CX 2024-04-02
China high quality 2 Pieces 6.35 mm to 8 mm Shaft Coupling 25 mm X 20 mm Coupler Aluminum Alloy Joint Motor Suitable for 3D Printers CNC Machine DIY Encoder
Product Description
Product Description
DO NOT worry about PRICE, we are manufacturer.
DO NOT worry about QUALITY, we have 16 years experience.
DO NOT worry about AFTER-SALES, we are 24 hours online.
Features :
1. The main body is made of high strength aluminum alloy
2. Zero backlash, suitable for forward and reverse rotation
3.Colloid is made of polyurethane, which has good wear resistance
4.Oil resistance and electrical insulation, the middle elasticbody can absorb vibration
5. Compensate radial, angular and axial deviations
6. Removable design for easy installation
7. Tightening method of positioning screw
Suitable for a wide range of devices
CNC lathes Optical inspection equipment
Module slider Servo motor
Company Profile
Certifications
Packaging & Shipping
All products will be well packed with standard export wooden case or
cartons.
Shafts packed with paper tube or plastic bag;
Linear guideways or lead screwswrapped with film or plastic bag;
Guarantee well protected against dampness,moisture, rust and shock.
Our Advantages
FAQ
Q1: Do you have a catalogue? Can you send me the catalogue to have a check of all your products?
A: Yes , We have product catalogue.Please contact us on line or send an Email to sending the catalogue.
Q2: I can’t find the product on your catalogue, can you make this product for me?
A: Our catalogue shows most of our products,but not all.So just let us know what product do you need.
Q3 : Can you make customized products and customized packing?
A: Yes.We made a lot of customized products for our customer before.And we have many moulds for our customers already.About customized packing,we can put your Logo or other info on the packing.There is no problem.Just have to point out that ,it will cause some additional cost.
Q4: Can you provide samples ? Are the samples free ?
A: Yes,we can provide samples.Normally,we provide 1-2pcs free samples for test or quality checking.But you have to pay for the shipping cos.If you need many items, or need more qty for each item,we will charge for the samples.
Any requirements or question,Welcome to “Send” us an e-mail Now!
It’s our great honor to do services for you! You also can get the FREE SAMPLES soon.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Diagnosing Potential Issues in Encoder Couplings
Identifying potential issues in encoder couplings is crucial for maintaining optimal performance. Some signs to watch for and diagnostic steps include:
1. Signal Inaccuracies: Inaccurate position or velocity feedback signals may indicate coupling misalignment. Use diagnostic tools to compare expected and actual readings.
2. Increased Noise: Unusual vibrations or noise during operation can indicate misalignment or wear. Perform vibration analysis or inspect the coupling for visual damage.
3. Signal Dropouts: Intermittent signal loss or dropouts can be due to poor coupling engagement or damaged wiring. Check wiring connections and the coupling’s mechanical integrity.
4. Drifting Position: If the controlled system’s position drifts over time, it could suggest issues in the encoder coupling’s precision. Monitor position deviations and inspect the coupling for wear.
5. Excessive Heating: Overheating of the coupling may point to misalignment or excessive friction. Monitor the temperature and ensure proper coupling lubrication.
6. Irregular Movement: Unexpected jerks or irregular motion can indicate binding or sticking in the coupling. Inspect the coupling’s components for damage or obstruction.
7. Reduced Accuracy: Decreased accuracy in positioning or velocity control might be due to backlash or wear. Measure and compare desired and achieved positions for accuracy assessment.
8. Excessive Wear: Visual inspection of the coupling’s components for signs of wear, such as cracked or deformed elements, can help detect potential issues early.
9. Misalignment: Misalignment between the encoder and the shaft can lead to signal discrepancies. Use precision measurement tools to assess alignment and adjust if necessary.
10. Visual Inspection: Regularly inspect the coupling for signs of corrosion, rust, or physical damage. Address any issues promptly to prevent further deterioration.
Performing routine maintenance, using diagnostic tools, and monitoring the system’s performance can help identify and address potential issues in encoder couplings, ensuring consistent and accurate motion control.
Suitability of Encoder Couplings for Harsh Environments and Extreme Temperatures
Encoder couplings can be designed and selected to withstand a wide range of environmental conditions, making them suitable for applications in harsh environments and extreme temperatures. Here’s how encoder couplings exhibit their suitability:
- Sealing and Encapsulation: Many encoder couplings are designed with effective sealing and encapsulation techniques that protect internal components from dust, moisture, and contaminants. This makes them suitable for outdoor or industrial environments where exposure to harsh elements is common.
- Material Selection: Encoder couplings can be manufactured using materials that offer high resistance to corrosion, chemicals, and other environmental factors. This ensures their longevity and performance in challenging conditions.
- Temperature Resistance: Some encoder couplings are specifically engineered to operate effectively across a wide temperature range, including extreme hot or cold environments. High-quality materials and precision manufacturing contribute to their temperature resistance.
- IP Ratings: Ingress Protection (IP) ratings indicate the level of protection an encoder coupling offers against solid particles and liquids. Encoders with higher IP ratings are better suited for harsh environments as they provide enhanced sealing and protection.
- Special Coatings: Certain encoder couplings can be coated with protective layers or finishes that provide additional resistance to harsh chemicals, oils, and other substances commonly encountered in industrial settings.
- Vibration and Shock Resistance: Encoder couplings can be designed to withstand vibrations and shocks that might occur in heavy machinery or equipment. This ensures consistent performance even in environments with mechanical stress.
- Customization: Manufacturers often offer customization options to tailor encoder couplings for specific environmental requirements. This includes features like extended shaft seals, special coatings, and additional protection measures.
Overall, encoder couplings can provide reliable signal transmission and precision in harsh environments or extreme temperatures when selected and installed appropriately.
Importance of Backlash Reduction in Encoder Couplings
Backlash reduction is a critical consideration when selecting encoder couplings, particularly in motion control and automation applications that require precision and accuracy. Backlash refers to the angular or linear movement that occurs when the direction of motion changes in a mechanical system.
In encoder couplings, backlash can lead to inaccuracies in signal transmission between the encoder and the driven component. This is especially problematic in applications that involve rapid changes in direction or require precise positioning. The importance of backlash reduction can be understood through the following points:
1. Precision: Backlash can introduce errors in the measurement or position control process. As the system changes direction, the backlash can cause a delay in the response of the encoder, leading to inaccurate position readings or control commands.
2. Repeatability: Systems that require consistent and repeatable motion rely on accurate signal transmission. Backlash can lead to inconsistencies in positioning, making it difficult to achieve the desired level of repeatability.
3. Minimized Error Accumulation: In applications that involve multiple movements and direction changes, backlash can accumulate and lead to a cumulative error over time. This can result in a significant deviation from the intended position or motion path.
4. Smooth Operation: Backlash can cause jerky or uneven motion transitions, affecting the overall smoothness of operation. In applications where smooth and continuous motion is crucial, backlash reduction becomes essential.
5. Feedback Loop Integrity: Many encoder systems rely on closed-loop feedback control to maintain accuracy. Backlash can disrupt the feedback loop, causing the system to overcompensate for the movement delay and leading to instability.
6. System Efficiency: Backlash can result in energy loss and mechanical stress as the system compensates for the delay in movement. This can reduce the overall efficiency of the system.
To address these challenges, encoder couplings are designed with features that minimize backlash. Coupling designs may incorporate mechanisms such as preloading, spring elements, or specialized materials that reduce the clearance between components, effectively reducing or eliminating backlash. By selecting encoder couplings with reduced backlash, motion control and automation systems can achieve higher levels of accuracy, repeatability, and overall performance.
editor by CX 2024-03-27
China Custom Encoders Engraving Aluminum Alloy CNC Stepper Motor Flexible Shaft Coupling
Product Description
Product Description
DO NOT worry about PRICE, we are manufacturer.
DO NOT worry about QUALITY, we have 16 years experience.
DO NOT worry about AFTER-SALES, we are 24 hours online.
Features :
1. The main body is made of high strength aluminum alloy
2. Zero backlash, suitable for forward and reverse rotation
3.Colloid is made of polyurethane, which has good wear resistance
4.Oil resistance and electrical insulation, the middle elasticbody can absorb vibration
5. Compensate radial, angular and axial deviations
6. Removable design for easy installation
7. Tightening method of positioning screw
Suitable for a wide range of devices
CNC lathes Optical inspection equipment
Module slider Servo motor
Company Profile
Certifications
Packaging & Shipping
All products will be well packed with standard export wooden case or
cartons.
Shafts packed with paper tube or plastic bag;
Linear guideways or lead screwswrapped with film or plastic bag;
Guarantee well protected against dampness,moisture, rust and shock.
Our Advantages
FAQ
Q1: Do you have a catalogue? Can you send me the catalogue to have a check of all your products?
A: Yes , We have product catalogue.Please contact us on line or send an Email to sending the catalogue.
Q2: I can’t find the product on your catalogue, can you make this product for me?
A: Our catalogue shows most of our products,but not all.So just let us know what product do you need.
Q3 : Can you make customized products and customized packing?
A: Yes.We made a lot of customized products for our customer before.And we have many moulds for our customers already.About customized packing,we can put your Logo or other info on the packing.There is no problem.Just have to point out that ,it will cause some additional cost.
Q4: Can you provide samples ? Are the samples free ?
A: Yes,we can provide samples.Normally,we provide 1-2pcs free samples for test or quality checking.But you have to pay for the shipping cos.If you need many items, or need more qty for each item,we will charge for the samples.
Any requirements or question,Welcome to “Send” us an e-mail Now!
It’s our great honor to do services for you! You also can get the FREE SAMPLES soon.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Diagnosing Potential Issues in Encoder Couplings
Identifying potential issues in encoder couplings is crucial for maintaining optimal performance. Some signs to watch for and diagnostic steps include:
1. Signal Inaccuracies: Inaccurate position or velocity feedback signals may indicate coupling misalignment. Use diagnostic tools to compare expected and actual readings.
2. Increased Noise: Unusual vibrations or noise during operation can indicate misalignment or wear. Perform vibration analysis or inspect the coupling for visual damage.
3. Signal Dropouts: Intermittent signal loss or dropouts can be due to poor coupling engagement or damaged wiring. Check wiring connections and the coupling’s mechanical integrity.
4. Drifting Position: If the controlled system’s position drifts over time, it could suggest issues in the encoder coupling’s precision. Monitor position deviations and inspect the coupling for wear.
5. Excessive Heating: Overheating of the coupling may point to misalignment or excessive friction. Monitor the temperature and ensure proper coupling lubrication.
6. Irregular Movement: Unexpected jerks or irregular motion can indicate binding or sticking in the coupling. Inspect the coupling’s components for damage or obstruction.
7. Reduced Accuracy: Decreased accuracy in positioning or velocity control might be due to backlash or wear. Measure and compare desired and achieved positions for accuracy assessment.
8. Excessive Wear: Visual inspection of the coupling’s components for signs of wear, such as cracked or deformed elements, can help detect potential issues early.
9. Misalignment: Misalignment between the encoder and the shaft can lead to signal discrepancies. Use precision measurement tools to assess alignment and adjust if necessary.
10. Visual Inspection: Regularly inspect the coupling for signs of corrosion, rust, or physical damage. Address any issues promptly to prevent further deterioration.
Performing routine maintenance, using diagnostic tools, and monitoring the system’s performance can help identify and address potential issues in encoder couplings, ensuring consistent and accurate motion control.
Proper Installation and Maintenance of Encoder Couplings
Proper installation and maintenance are essential for ensuring the optimal performance and longevity of encoder couplings. Here’s a step-by-step guide:
1. Installation:
- Ensure Proper Alignment: Align the encoder coupling and shafts precisely to minimize misalignment, which can lead to signal loss and premature wear.
- Secure Fasteners: Tighten fasteners according to manufacturer specifications to prevent coupling slippage and maintain signal accuracy.
- Check Clearances: Ensure there’s enough clearance between the encoder coupling and surrounding components to prevent interference during operation.
- Use Proper Tools: Use appropriate tools and techniques during installation to avoid damaging the encoder coupling or other components.
2. Initial Testing:
- Perform System Check: After installation, conduct initial tests to verify proper signal transmission and alignment. Address any issues promptly.
- Check Signal Integrity: Use appropriate testing equipment to verify that the encoder signals are accurate and consistent.
3. Regular Maintenance:
- Visual Inspection: Regularly inspect the encoder coupling for signs of wear, damage, or misalignment. Look for cracks, corrosion, or other irregularities.
- Lubrication: If the encoder coupling requires lubrication, follow manufacturer guidelines to ensure proper lubricant application and prevent excessive wear.
- Cleanliness: Keep the encoder coupling and its surroundings clean to prevent debris and contaminants from affecting performance.
- Monitor Temperature: Monitor operating temperatures to ensure the encoder coupling remains within its recommended temperature range.
4. Preventive Measures:
- Regular Checkups: Schedule periodic maintenance and inspections to catch potential issues before they lead to significant problems.
- Alignment Checks: Regularly verify shaft alignment to maintain accurate signal transmission and prevent premature wear.
- Replace as Needed: If the encoder coupling shows signs of significant wear, damage, or signal degradation, consider replacing it to avoid system failures.
5. Follow Manufacturer Recommendations:
- Adhere to the manufacturer’s installation, maintenance, and lubrication guidelines to ensure optimal performance and maintain warranty coverage.
By following these installation and maintenance practices, you can ensure that your encoder coupling functions reliably and efficiently, contributing to the overall performance of your motion control or automation system.
Role of Encoder Couplings in Motion Control and Automation
An encoder coupling is a crucial component in motion control and automation systems, used to facilitate precise position and speed sensing:
It connects the shafts of a motor and an encoder, allowing the accurate transmission of rotational motion while maintaining precise alignment. The primary functions and usage of an encoder coupling include:
- Rotational Precision: Encoder couplings ensure that the rotational motion of the motor shaft is accurately transmitted to the encoder, preserving the exact position and speed information.
- Misalignment Compensation: They can accommodate slight misalignments between the motor and the encoder shafts, which can occur due to manufacturing tolerances or shaft deflection during operation.
- Torsional Stiffness: Encoder couplings maintain torsional stiffness to ensure minimal torsional deformation during motion, preventing signal inaccuracies and maintaining synchronization.
- Signal Integrity: Maintaining precise alignment helps preserve the integrity of the electrical signals generated by the encoder, ensuring accurate position and speed measurements.
- Reduced Wear: By minimizing misalignment and torsional stress, encoder couplings help reduce wear and extend the lifespan of both the motor and the encoder.
Overall, encoder couplings are essential for achieving accurate motion control and automation, enabling precise positioning and speed control in various applications such as robotics, CNC machines, conveyor systems, and more.
editor by CX 2024-03-26